
Asset-driven Security Assurance Cases with Built-in
Quality Assurance

Mazen Mohamad
Chalmers and University of Gothenburg

Gothenburg, Sweden
mazen.mohamad@gu.se

Örjan Askerdal
Volvo Trucks

Gothenburg, Sweden
orjan.askerdal.3@volvo.se

Rodi Jolak
Chalmers and University of Gothenburg

Gothenburg, Sweden
rodi.jolak@cse.gu.se

Jan-Philipp Steghöfer
Chalmers and University of Gothenburg

Gothenburg, Sweden
jan-philipp.steghofer@gu.se

Riccardo Scandariato
Hamburg University of Technology

Hamburg, Germany
riccardo.scandariato@tuhh.de

Abstract—Security Assurance Cases (SAC) are structured
arguments and evidence bodies used to reason about security
of a certain system. SACs are gaining focus in the automotive
domain as the needs for security assurance are growing. In this
study, we present an approach for creating SAC. The approach
is inspired by the upcoming security standards ISO/SAE-21434
as well as the internal needs of automotive Original Equipment
Manufacturers (OEMs). We created the approach by extracting
relevant requirements from ISO/SAE-21434 and illustrated it
using an example case of the head lamp items provided in the
standard. We found that the approach is applicable and helps to
satisfy the requirements for security assurance in the standard
as well as the internal compliance needs in an automotive OEM.

Index Terms—security, assurance cases, automotive systems

I. INTRODUCTION

Assurance cases are structured bodies of arguments and
evidence used to reason about a certain property of a system.
Security Assurance Cases (SAC) are a type of assurance case
for the field of cyber-security. In this paper, we turn our
attention to the creation of a SAC, with particular focus on
the domain of automotive applications. As vehicles become
more advanced and connected, security scrutiny has increased
in this domain. Furthermore new standards and regulations
push towards assuring security for vehicular systems by using
SAC. Similarly to safety cases, which are required in safety
standards, e.g., ISO-26262 [1], SACs are explicitly required in
ISO/SAE-21434 [2]. Additionally, SACs are required for all
systems in production.

In literature, there are some studies that suggest the cre-
ation of SAC based on requirements derived from security
standards [3], [4]. However, there is no approach which helps
achieving conformance with the upcoming ISO/SAE-21434
standard. Additionally, since the requirements for SAC are
new, there is no evidence in the literature that the knowledge
base in industry is mature enough to achieve conformity to
these requirements. Moreover, quality assurance of the SACs

This work is partially supported by the CASUS research project funded by
VINNOVA, a Swedish funding agency.

is missing in the reported approaches in literature, even though
it is a very important aspect. In order for different stakeholders
to use an SAC, it is essential to trust that the SAC’s argument
is built with a sufficient level of completeness, and that the
evidence provides a sufficient level of confidence to actually
justify the targeted claims. Finally, we identified that the
lack of industry involvement is a significant issue in current
approaches. This results in gaps between research and industry.

To bridge these gaps, we have worked together with Volvo
Trucks, an international automotive OEM, to develop CAS-
CADE, the asset-driven approach for SAC creation presented
in this paper. CASCADE is based on the requirements and
work products of ISO/SAE-21434. It is asset-driven, i.e.,
the resulted SACs have assets as drivers of the structure of
the security arguments. Therefore, it allows creating security
assurance based on what is valuable in the system. Addition-
ally, we integrated quality assurance in SACs created with
CASCADE by distinguishing between product-related claims
and quality claims, as well as building arguments for both.

From a methodological standpoint, we created and validated
our approach as follows. First, we created a high-level struc-
ture of an asset-driven SAC, which included the identification
of the assets, the tracing of such assets to system elements
(e.g., processing, communication, and storage operations),
and the identification of the relevant security assets for each
asset. Second, we analyzed the ISO/SAE-21434 standard and
extracted the requirements and work products that are relevant
to SAC. Accordingly, we mapped the extracted items to
the elements of our asset-driven SAC. We then illustrated
the approach using the exemplary case study mentioned in
ISO/SAE-21434. Finally, we presented the resulting approach
to the security experts from an industrial automotive OEM
and gathered their feedback. The results are presented in
Sections III–V, after discussing the related work in Section
II.

II. BACKGROUND AND RELATED WORK

In this section, we provide background information about
SAC, security assets in automotive, and their corresponding
security threats and attacks. We also review related work of
asset-based approaches in literature.

A. Security Assurance Cases

Assurance cases are bodies of evidence organized in struc-
tured arguments, used to justify that certain claims about a
systems property hold [5]. The argumentation in a Security
Assurance Case (SAC) consists of claims about security for the
system in question, and the evidence justifies these security-
related claims. SAC consist of the following primary compo-
nents: (i) security claims, (ii) the context in which the claims
should hold, (iii) an argument about the security claim, (iv) the
strategy used to build the argument, and (v) a body of evidence
to prove the claims [6], [7]. SAC can be expressed in a textual
or graphical format [7]. The most common graphical formats
are the Goal Structure Notation (GSN, [8]), and the Claims,
Arguments, and Evidence notation (CAE, [9]).

B. Automotive Assets and Related Security Threats

According to [10], there are four categories of assets in
automotive systems that are targeted by security threats and
attacks. These assets are hardware, software, network and
communication, and data storage.

• Hardware: This asset category includes sensors, actua-
tors, and the hardware part of the Electronic Control Units
(ECUs). These assets are often threatened by disruption
or direct interventions that influence their availability and
integrity. Examples of attacks on these assets include fault
injection and information leakage.

• Software: This category includes external libraries, Oper-
ating Systems (OS), applications, virtualization, and the
software part of the ECUs. Security threats and attacks
on software assets include the manipulation of software,
such as tampering attacks which often target software
availability and integrity.

• Network/Communication: Refers to internal or external
communication. Internal communication assets are busses
such as CAN, FlexRay, LIN, MOST, and automotive
Ethernet. External communication assets are WiFi, Blue-
tooth, and Vehicle to Everything (V2X) communication.
Examples of attacks on these assets includes fabrication
or jamming attacks, spoofing, message collision, eaves-
dropping, hijacking, and denial of service (DoS). These
attacks target the confidentiality, integrity, availability,
and privacy of the these assets.

• Data storage: Sensitive data including user data, backups,
cryptographic keys, forensics logs, and system informa-
tion and reports. These assets are targeted by unau-
thorized access and malicious manipulation that often
influence the confidentiality, integrity, availability, and
privacy of the data.

Level 1: Risk assessment

Level 2: Attack paths

Level 1: Threat scenarios

Level 2: Security goals

Level 1: Asset identification and decomposition

Top Claim

Level 2: Security requirements

White-hat Block

Black-hat Block

Resolver Block

Evidence

QA

G
en

er
ic

 S
ub

-c
as

e

QA

Fig. 1. The CASCADE approach for creating security assurance cases

C. Asset based approaches

Researchers have been exploring several asset-based ap-
proaches for creating the argument part of SAC. Biao et
al. [11] suggest dividing the argument into different layers, and
using different patterns (one per layer) to create the part of the
argument that corresponds to each layer. Assets are considered
as one of these layers, and the pattern used to create it includes
claims that the assets are “under protection”, and strategies to
break down critical assets. Biao et al. [11], however, do not
consider the quality of the cases and only focus on creating
arguments without touching upon the evidence part.

Luburic et al. [12] also present an asset-centric approach for
security assurance. The info used in their approach is taken
from: (i) asset inventories; (ii) Data Flow Diagrams (DFD)
of particular assets and the components that manipulate them;
and (iii) the security policy that defines protective mechanisms
for the components from the previous point. They propose
a domain model where assets are the center pieces. The
assets are linked to security goals. The argument considers
the protection of the assets throughout their life-cycles by
arguing about protecting the components that store, process,
and transmit those assets. The SAC they provide is very
high level and includes two strategies: “reasonable protection
for all sensitive assets” and arguing over the data-flow of
each related component. The authors illustrate the approach
with a conference management system example. They state
that the main limitations of their are asset and data flow
granularity. In our study, we consider the the assets to be
the driver of our approach, but we extend the argument to
reach the level of concrete security requirements. We also
derive our strategies from an industrial standard and validate
our approach in collaboration with an OEM. Furthermore, we
extend our approach to include case quality aspects.

III. CASCADE

In general terms, assets are artifacts of interest to a certain
entity. In computer security, these artifacts can be hardware,
software, network and communication, or data [10]. The
importance of assets makes them the target of attackers.

The CASCADE approach for creating security assurance
cases takes the importance of assets to organizations into
consideration. Hence, it builds the argumentation by putting
assets in focus, with the goal to show that these assets are
secure from cyber security attacks. Our aim is to prove that a
given artefact is secure by arguing that its assets are secure.

An important design principle in the CASCADE approach
is the integration of quality assurance of the cases in terms
of argumentation completeness and evidence confidence. Each
level of argumentation (i.e., strategy) is associated with at least
one claim about completeness, and each level of evidence is
associated with at least one claim about confidence. A similar
concept is used by Hawkins et al. [13] to argue about the
confidence of safety cases.

A. Elements of an SAC in CASCADE

We use GSN [8] to create SAC using the CASCADE
approach. The elements of the notation are: (i) Claim 1: a
security claim about the artefact in question; (ii) Strategy:
a method used to decompose a claim into sub-claims; (iii)
Evidence / Solution: a justification of a Claim / set of claims;
(iv) Context: used to set a scope of a given claim; and (v)
Assumption: used to document the assumptions made for a
certain claim.

In addition to these, we have created additional types of
elements to be used in our approach: (vi) Case Quality-
claims (CQ-claims): represent claims about the quality of
the created case itself; (vii) Case Quality-evidence (CQ-
evidence): represent evidence used to justify CQ-claims; and
(viii) Generic sub-case: consist of generic claims, strategies,
contexts, assumptions, and evidence that are not bound to a
specific artifact, but instead are applicable to a wider range of
artifacts in the context of a product, program, or organization.

B. Building blocks of the CASCADE approach

The asset-based approach consists of building blocks, as
shown in Figure 1. Each block contains a sub-set of the case.
In the following sub-sections, we explain the blocks and their
contents.

1) Top claim: This block consists of the top security claim
of the artefact in question. It also includes the context of the
claim and assumptions made to set the scope of the claim. If
we are considering a software system, e.g., we might make an
assumption that the hardware is secure. The top claim differs
between different organizations and drives the granularity of
the SAC. For example a service provider might consider the
security of a service to be the top claim, but an automotive
OEM might need to consider the whole vehicle’s security,

1In GSN, the terms goal and subgoal are used to refer to high and low
abstraction levels of argumentation claims respectively. To avoid confusion,
we refer to these as claims.

which requires the incorporation of different services or user
functions. Similarly, depending on the intended usage of the
SAC, the top claim might include back-end systems, or only
on-board systems. For example to assure the security of a
complete vehicle, it is important to make sure that not only
the vehicle’s components are secure, but also the back-end
systems which communicate with the vehicle. In contrast, to
ensure that a certain end-user function in the vehicle is secure,
it might be enough to only consider the corresponding sub-
systems in the vehicle itself.

2) Generic sub-case: This block contains a sub-case that
is applicable not only to the artefact for which the SAC is
being created, but instead to a larger context. For example,
if a company defines a cybersecurity policy, enforced by
cybersecurity rules and processes, then the policy can be
used in security claims for all its products. These claims
can be re-used when creating SAC for individual artefacts.
Another example is when certain claims can be made on a
product level. Then these claims can be reused for all SAC of
individual components of that product. Our aim with this block
is to make the approach scalable in larger organizations with
complex products and multiple teams. Each team can work on
a part of the SAC which corresponds to their artefact. On a
higher level, these SAC can be combined together, and generic
arguments that are applicable to the sub-SAC can be provided.

3) White-hat block: This block starts with the identification
of assets, which is the driver of our approach. Asset identifi-
cation is done by conducting an analysis to find the artefacts
of the system that are likely to be subject to an attack.

When the assets are identified, they can be further decom-
posed during the different phases of the development life-
cycle. For example in an OEM, a high-level asset analysis
is done at the concept phase, and later a low-level analysis
is conducted during implementation, where more information
about the assets and their usage is known.

a) Linking assets to higher-level claims: To link the
assets to the main claim, we identify which assets exist
and which components use or have access to these assets.
For example, in a vehicle, the driver’s information can be
considered an asset which is accessible by the infotainment
system of the vehicle. Hence, we link this asset to the claims
of the security of the infotainment system. To make this more
concrete, we look at the traceability of the asset. For example,
we consider the assets (i) “at rest”, which refers to where
the assets are stored; (ii) “on the move”, when the asset is
in transition between two entities, e.g., when sensor data is
being transferred from the sensor to an ECU; and (iii) “in
use”, which is when the asset is being used, e.g., when some
diagnostics data is being processed by a back-end system.

b) Decomposition of assets: To decompose assets, we
look into the types of the identified assets. This gives an
indicator whether the asset would have implications on the
local part of the vehicle (one electronic control unit/ECU), or
on a bigger part of the vehicle (multiple ECUs). We also look
into the relations among assets, e.g., dependability.

c) Linking assets to the lower level: To link the asset
to the lower level in the approach, i.e., the security goals,
we identify the relevant security properties for the assets.
Specifically, we look into the Confidentiality, Integrity, and
Availability (CIA) triad. For example, the vehicle engine’s
start functionality is an asset which has relevant integrity and
availability properties.

d) Identification of security goals: When we have iden-
tified the relevant security properties for each asset, we create
claims representing the security goals2. Following our example
of the engine start request, a claim about the achievement of
a security goal would be that the availability of the request is
preserved. One combination of asset/security property might
lead to several goals, for example that the engine start is
available using a connected mobile app and a web portal. To
make sure the relevant properties are covered when identifying
security goals, we consider damage scenarios that lead to
compromising the security goals, e.g., that the engine start
request is unavailable, or an unintended start of the engine
occurs, which would damage the integrity of the asset.

4) Black-hat block: In this block, we aim to identify the
scenarios that might lead to not fulfilling the identified security
goals and hence cause harm to our identified assets.

a) Identification of threat scenarios: When we have
identified the claims about the achievement of security goals,
we proceed by identifying the threat scenarios and creating
claims for negating the possibility of these scenarios. We con-
nect these claims to the corresponding claims about achieving
security goals. For example, a claim handling a threat scenario
connected to the claim “Unintended request for engine start
is not possible”, might be identified by considering a threat
model, e.g., STRIDE [15]. Hence a claim might look like:
“Spoofing a request for engine start is not possible”.

b) Identification of possible attack paths: In this step, we
identify possible attack paths which can lead to the realization
of a threat scenario. Each threat scenario might be associated
with multiple attack paths. We then claim the opposite of these
attack paths. An example of an attack path is “An attacker
compromises the cellular interface and sends a request to start
the engine”, and the claim would be to negate the possibility
for that.

5) Resolver block: This block is the last one in the argu-
mentation part of the CASCADE approach. It links the claims
derived from the attack paths to the evidence.

a) Risk assessment: In this level, we assess the risk of
the identified attack paths. Based on the risk level, the creators
of the SAC create claims to treat the risk by, e.g., accepting,
mitigating, or transferring it.

b) Requirements: At this point, requirements of risk
treatments identified in the previous level are to be expressed
as claims. This level may contain multiple decomposition of
claims, based on the level of detail the creators of the SAC
wish to achieve, which is driven by the potential usage of the
SAC. For instance, if the SAC is to be used by a development

2A security goal is preserving a security concern (CIA) for an asset [14]

team to assess the security level, this might require a fine
grained requirement decomposition which might go all the
way to the code level. In contrast, if the SAC is to be used
to communicate security issues with outside parties, a higher
level of granularity might be chosen. In either case, it is
important to reach an “actionable” level, meaning that the
claims should reach a point where evidence can be assigned
to justify them.

6) Evidence: The evidence is a crucial part of an SAC. The
quality of the argument does not matter if it cannot be justified
by evidence. In our approach, evidence can be provided at any
block of the argumentation.For example, if it can be proven
in the black-hat block that a certain asset is not subject to
any threat scenario, then evidence can be provided, and the
corresponding claims can be considered as justified. If the
creators of the SAC cannot assign evidence to claims, this is an
indicator that either the argument did not reach an actionable
point or that there is a need to go back and make development
changes to satisfy the claims. For example if we reach a claim
which is not covered by any test report, then there might be
a need to create test cases to cover that claim.

7) Case Quality Assurance: We consider two main aspects
of quality assurance for SAC in CASCADE. The first aspect
is completeness which refers to the level of coverage of
the claims in each argumentation level of the SAC. Each
level in CASCADE includes at least one strategy. For each
strategy, we add at least one completeness claim that refines
it. The role of this claim is to make sure that the strategy
covers all and only the relevant claims on the argumentation
level. The completeness also relates to the context of the
argumentation strategy. The context provides the information
needed to determine if the completeness claim is fulfilled or
not.

The second aspect is confidence which indicates the level
of certainty that a claim is fulfilled based on the provided
evidence. This is used in each level of a security assurance
case where at least one claim is justified by evidence. The
confidence aspect is expressed as a claim, which takes the
form: “The evidence provided for claim X achieves an ac-
ceptable level of confidence”. What makes an acceptable level
of confidence is defined in the context of the strategy. The
confidence claim itself must be justified by evidence.

IV. EXAMPLE CASE

To validate our approach, we apply CASCADE on the
headlamp item use case from ISO/SAE-21434 which includes
the headlamp system, navigation ECU, and gateway ECU.

A. Top Claim

We start by constructing the Top Claim block consisting of:

• C:1 the top security claim for the headlamp item.
• Cnxt:1.1 a context node setting the scope of the claim.
• Assmp:1.1 an assumption node, stating that the item is

physically protected.

The context node refers to an external document, which is the
item boundary and preliminary architecture of the headlamp
item, as identified in ISO/SAE-21434.

B. White-hat Block

The White-hat block is presented in Figure 2. We first
apply a strategy S:1.1 to decompose our main claim based
on the identified assets of the headlamp item. In our ex-
ample, the main assets are the CAN Frame, which holds
transmitted messages, and the Firmware which includes
control functions of the artifacts inside the headlamp system,
e.g., the power switch. We create two claims C:1.1.1 and
C:1.1.2 indicating that the two assets are acceptably secure.
The strategy S:1.1 is associated with a quality claim QC:1.1.1,
to ensure the completeness of the decomposition associated
with it, and hence the completeness of the case in general.

The two identified assets are further decomposed into sub-
assets. This decomposition is based on the components and
functions the asset belongs to. For example, based on claim
C:1.1.2 we apply strategy S:1.2.2 and decompose the CAN
Frame asset into a number of sub-assets. Moreover, we
create security claims for the identified sub-assets: C:1.2.2.1,
C:1.2.2.2, C:1.2.2.3, and C:1.2.2.4. Lastly, strategy S:1.2.2 is
associated with quality claim QC:1.2.2.1.

At this point, we link the assets to the security goals (i.e.,
second level). To do so, we apply an argumentation strategy
(e.g., S:1.3.2) to decompose the security claims of the sub-
assets based on the CIA triad attributes. As a result, we
create claims about the achievement of security goals such as
C:1.3.2.1: “The integrity of CAN message transmission in the
body control ECU is preserved”.To make sure that we cover
the relevant properties, we create a quality claim QC:1.3.2.1
and argue (S:1.4.2) about possible damage scenarios that could
invalidate the claims. Accordingly, we create quality claims
which make sure that these damage scenarios do not happen.
An example of theses claims is QC:1.4.2.1: “Unintended
turning off of headlamps during night driving is not possible”.
At this point, the claim is fine-grained enough and counts as
a security goal. Next, we create the black-hat block.

C. Black-hat Block

Here we argue over the threat scenarios that could lead to
compromising a security goal.

Figure 3 shows a part of the black-hat block of the headlamp
use case. This part is associated with the claim about achieving
a security goal C:1.4.2.1 that is shown in Figure 2. We start by
creating strategy S:1.5.1 to argue over the used threat model. If
e.g., STRIDE is used as a threat model, then the strategy would
be to create a claim for each STRIDE category.In our example
case, we create claim C:1.5.1.1: “Spoofing of a signal leading
to loss of integrity of the CAN message of Lamp Request
signal of power switch actuator ECU is not possible”. To
ensure the completeness of the case, we further associate the
strategy S:1.5.1 with a quality assurance claim (QC:1.5.1.1).

At this point, our claims become more concrete as we
have a specific item, asset, container component, security

property, damage scenario, and threat scenario. We use the
analysis of attack paths to further decompose and populate
the example case. We apply strategy S:1.6.1 to argue over
the attacks and create attack path claims. The resulting claims
negate the possibility for an attack path to take place, e.g.,
C:1.6.1.4 “It is not possible for an attacker to compromise
the Navigation ECU from a cellular interface”. As for all
strategies in CASCADE, we associate the strategy used in
the attack path with a quality assurance claim (QC:1.6.1.1) to
ensure the completeness of the case.

D. Resolver and Evidence Blocks

In this stage, we create the resolver block by investigating
ways to resolve the attack paths based on a risk assessment
and creating requirements for the intended risk treatments.

Figure 4 shows a part of the resolver block for our example
case associated with the attack path C:1.6.1.4. The outcome of
the risk assessment would be to accept, mitigate, transfer, or
solve the risk. When a risk is accepted, then there is no need
to further decompose the claim. In the other cases, a strategy
(S:1.7.1) to decompose the risk of an attack path has to be
created. In our example, we create claim C:1.7.1.1 to mitigate
the risk as follows: “The risk of an attacker compromising the
Navigation ECU from a cellular interface is reduced”.

This leads to the stage where we argue on the requirements
in order to specify how the risk has to be reduced or mitigated.
An example of a requirement claim is C:1.8.1.1: “The received
data is verified if it is sent from a valid entity”.

Figure 4 also shows the evidence block which provides
examples of evidence to justify the requirement claims. The
evidence (e.g., E:1.1) is supported by quality evidence (e.g.,
QE:1.1) which, in tun, is complemented with requirement
quality claims (e.g., QC:1.8.1.1) to confidently justify the
associated requirement claims.

E. Generic Sub-case Block

Figure 5 shows the last block in our example; the generic
sub-case. This block includes claims that are relevant to the
example case, but are not specific to it. For example, claim
C:G2 states that “The company has a security aware culture”,
which is supported by two evidence statements; E:G2.1 and
E:G2.2 to prove that the employees of the company were given
a security training. Similarly to other blocks, the generic sub-
case block might include strategies (e.g., S:G1) to break down
claims. Moreover, these strategies are associated with quality
assurance claims (e.g., QC:G.1.1) as shown in Figure 5.

V. VALIDATION

In order to evaluate our approach, we reached out to a
security expert from the cybersecurity team at Volvo Trucks,
which is a leading OEM that manufactures trucks in Sweden.
We conducted several sessions during the development of
CASCADE where we discussed the approach, its limitations
and possible enhancements. When the approach was fully
developed, we conducted a final evaluation session with the
expert. We first discussed the way of working of the company

The power switch control is
acceptably secure

All relevant asset are
identified

CAN Frame is acceptably
secureFirmware is acceptably

secure

Argue over
identified assets of the headlamp item

Argue over the decomposition of the
Firmware asset

Argue over the decomposition of the
CAN frame asset

The CAN message
transmission is acceptably
secure in the body control

ECU

The headlamp control is
acceptably secure

The CAN message
transmission is acceptably
secure in the power switch

actuator

The oncoming car
information Yes/No CAN
message is acceptably

secure

The lamp low ON/HI
ON/OFF request CAN
message is acceptably

secure

All relevant decompositions
of the firmware are

considered

The Integrity of the
CAN message transmission in the

body control ECU is preserved

The Availability of the
CAN message transmission in the

body control ECU is preserved

The Integrity of the
CAN message transmission in the
power switch actuator is preserved

Asset identification and decomposition

Security goals

White-hat

All relevant decompositions
of the CAN frame are

considered

S:1.1

S:1.2.1

QC:1.1.1

C:1.1.1
C:1.1.2

S:1.2.2

C:1.2.1.1 C:1.2.1.2 C:1.2.2.1 C:1.2.2.2 C:1.2.2.3 C:1.2.2.4

QC:1.2.1.1 QC:1.2.2.1

C:1.3.2.1 C:1.3.2.2 C:1.3.3.1

Argue over the security properties of the
CAN message transmission in the

body control ECU

S:1.3.2

Argue over the security properties of the
CAN message transmission in the

power switch actuator

S:1.3.3

All relevant security properties of the
CAN message transmission in the
body control ECU are considered

Argue over identified damage
scenarios that might results

from the loss of integrity of the CAN
message transmission

in the body control ECU

Unintended turning off of headlamps
during night driving is not possible

Unintended turning off of
headlamps during IGN switch's

turn-off is not possible

S:1.4.2

QC:1.4.2.1 QC:1.4.2.2

QC:1.3.2.1

Fig. 2. White-hat block of the headlamp use case

QC:1.5.1.1

C:1.5.1.1

Argue over threat scenarios
that may lead to compromising

the Integrity of the
CAN message transmission in the

body control ECU

Spoofing of a signal leading to loss
of integrity of the CAN message of
"Lamp Request" signal of power

switch actuator ECU is not possible

Threat scenarios

Black-hat

Argue over attack paths related to
tampering of a signal sent from the

body control ECU

It is not possible that the gateway
ECU forwards a malicious signal to

the power switch actuator

It is not possible that malicious
signals spoof the lamp switch on

requrest

It is not possible for an attacker to
compromize Navigation ECU from a

cellular interface

Attack path

It is not possible for an attacker to
send malicious control signals from

OBD2 connector

S:1.6.1

C:1.6.1.1 C:1.6.1.2 C:1.6.1.3 C:1.6.1.4

All threat scenarios have
been considered

QC:1.6.1.1

S:1.5.1

All threat scenarios have
been considered

Fig. 3. Black-hat block of the headlamp use case

C:1.7..1.1

Argue over the treatment based on
the assigned risk level

The risk of an attacker compromises
Navigation ECU from a cellular

interface is reduced

Argue over cybersecurity requirements
to handle risk treatment

The received data is verified if it is
sent from a valid entity

Unauthenticated entities are
prevented from accessing the

cellular network

Verification
report xx

Verification
report xy

Risk assessment

Requirements

The top down concept design
has to be verified by a bottom

up analysis of the risks

Resolver

Evidence

S:1.7.1

QC:1.7.1.1

S:1.8.1

C:1.8.1.1 C:1.8.1.2

E:1.1 E:1.2

Evidence E:1.1 , E:1.2
acceptably justify associated

claims

Test coverage
report

QC:1.8.1.1

QE:1.1

Fig. 4. Resolver and evidence blocks of the headlamp use case

The company has a
security aware culture

Mandatory security
course ID:xx was

given to every
relevant position

Basic security
training ID: xy is a

part of new
employment
procedure

The company has a
working security

policy

Argue by security
governance elements

security resources
are provided

security
responsibilities are

assigned

HR report no. 123

All elements to enforce
enable and ensure the
cybersecurity policy are

addressed

All the elements
mentioned in ISO
21434 have been

addressed

QC:G1.1

QE:G1.1

S:G1

C:G1

C:G1.1 C:G1.2

E:G1.1

C:G2

E:G2.1
E:G2.2

Generic sub-case

Fig. 5. Generic sub-case block of the headlamp use case

when it comes to security activities and security assurance. We
used the headlamp example from ISO/SAE-21434 as a context
for this discussion. We then presented our approach and the
example case for the headlamp item. The expert evaluated the
approach by discussing how the overall structure of an SAC
should look like from the company’s perspective in order to
satisfy the requirement for security cases in ISO/SAE-21434
and mapping the different elements of the example case to the
internal way of working. The expert also provided insights on
how to further enhance the approach.

Figure 6 shows the different security activities at the com-
pany along with the corresponding CASCADE block. A link
between an activity and a block indicates that the outcomes
of the activity are used to create the SAC elements in the
corresponding block.

Software products at Volvo Trucks contain both on-board

TARA analysis

Attack paths
identification

Security
Requirements

Top Claim White-hat Black-hat Resolver

Testing and
verification

Evidence

Product
Definition

Item definition

Primary assets'
identification

Security goals

Security activities
at Volvo Trucks

CASCADE blocks

Align with

Fig. 6. Mapping of the company’s security activities to CASCADE blocks

and off-board parts. The off-board parts establish the com-
munication between the vehicles and the back-end systems.
For example, the diagnostics services receive data from the
vehicle’s ECUs and store and use it in a back-end system.
The on-board parts are software components installed in the
ECUs of the vehicle, e.g., the engine control and the head-up
display unit. These parts are divided into items to facilitate the
security-related analysis. The items of the off-board systems
can be seen as individual services which communicate with the
vehicles, whereas the on-board items are end user functional-
ities, e.g., external lighting and automated parking assistance.
In order to argue about the security of a complete product, both
off-board and on-board items have to be considered. Hence, if
the company wants to adopt CASCADE to create an SAC for
a complete product, then the top claim block would contain
claims for the individual items of that product. The Generic
sub-case block of CASCADE helps to remove redundancy of
arguments and evidence applicable to different items.

The assets of a product are identified by considering dam-
age scenarios on the items. In general, these assets can be
generalized into the following categories:

• Vehicle’s functionality (the attackers want to use the
vehicle or tamper with the vehicle’s functionality for their
own purpose or impede the rightful user from utilizing
the vehicle functionality);

• Information (the attackers want to gain access to sensitive
information); and

• Brand (the attackers want to discredit the brand and/or
credit themselves).

The identified assets are further categorized into primary
and secondary assets in accordance with the definitions in
ISO-27005 [16]. Considering the headlamp example case, two
possible damage scenarios would be “Loosing the headlamp
will drastically reduce the driver’s sight and the vehicle’s vis-
ibility, which may result in a severe accident” and “Applying
the headlamp at incorrect times could dazzle other vehicles,
which may increase the risk of an accident”. These lead to
considering the headlamp functionality as a primary asset.

Then, relevant security attributes for the primary asset are
identified and security goals as are derived:

• The integrity of the headlamp control functionality shall
be preserved.

• The availability of the headlamp control functionality
shall be preserved.

The identification of assets and security goals corresponds
to the white-hat block of CASCADE, as shown in Figure 6.

These goals only take relevant security properties into consid-
eration, i.e., integrity and availability. Hence, other properties
such as confidentiality and authenticity are not considered.
During the concept design phase, a Threat Assessment and
Remediation Analysis (TARA) is performed on the item’s pri-
mary assets using STRIDE, which will result in cybersecurity
requirements on certain components which are considered as
supporting assets. These requirements are converted to claims
in the black-hat block of CASCADE, as shown in Figure 6.

After that, attack path analyses are performed bottom-up
using an attack library, including but not limited to:

• Intended over-the-air connection (e.g., 2,5G, 3G, 4G or
5G, Wi-Fi, WPAN, Bluetooth, IrDA, Wireless USB, and
UBW);

• Intended physical connection points (e.g., OBD, USB,
and CD-Rom);

• Unintended over-the-air disturbances (e.g., Radar, Laser,
electro-magnetic, microwaves, infra-waves, ultrasound,
and infra-sound);

• Unintended physical connection points (e.g., ECU, net-
work, sensors, and actuators).

These attack paths are also expressed as claims in the
Black-hat block. Then the component design will be started
considering all requirements, including cybersecurity. The
components and systems are described in “product descrip-
tions”. These are verified against the requirements, including
cybersecurity. The cybersecurity requirements in the product
description correspond to the requirements of the Resolver
block in CASCADE. The components and systems are then
tested against the product descriptions, and the test results are
considered as evidence in CASCADE.

Other SAC requirements also emerged from the discussion
with the security experts. For instance, they emphasised the
need to validate that production, operation, service and de-
commissioning are all adequately handled. We believe that this
would be covered by QA claims in the resolver block. Another
requirement is that the product along with the SAC is main-
tained throughout the life-cycle. This is not covered by CAS-
CADE, and we consider it to be an important complementary
aspect for future work. In particular, we will be looking into
methods to ensure traceability between the elements of SACs
and the corresponding development artefacts. This traceability
allows impact analysis for maintaining SACs. Lastly, the
experts stress that it is important to argue that the performed
product work is adequate with respect to cybersecurity policies
and practices adopted by the company.We believe that this is
covered by the generic sub-case block of CASCADE.

To summarise the validation, we showed that CASCADE
aligns well with respect to the way of working at Volvo
Trucks. The structure of SAC built with CASCADE follows
the structure of work done at the design phase at Volvo to a
large extent and the generic sub-case and quality blocks help
to serve the abstraction and completeness requirements of the
company. We have identified some limitations in the approach
which will be the basis for future work.

VI. CONCLUSION AND FUTURE WORK

We have presented CASCADE, an approach to build se-
curity assurance cases driven by assets and geared towards
automotive companies that want to conform to the upcoming
ISO/SAE-21434. We illustrated the approach using an example
case from the standard and validated it at an industrial OEM.
We found that the way of working at the company aligns with
our approach.

As a future work, we plan to extend the approach to take
into consideration the maintenance of SAC. We will also
look into requirements sources other than ISO/SAE-21434 to
better cover the needs of the automotive industry. Additionally,
we plan to further validate the approach by including a
larger community of automotive companies and automotive
security experts. Additionally, we plan to create a systematic
methodology to create SAC in the automotive industry by
mapping CASCADE to the requirements and work products
of ISO/SAE-21434.

REFERENCES

[1] International Organization for Standardization, “ISO 26262 Road vehi-
cles – Functional safety, 2nd Edition,” Geneva, Switzerland, 2018.

[2] International Organization for Standardization and Society of Auto-
motive Engineers, “ISO / SAE 21434 Road vehicles – Cybersecurity
Engineering, CD Draft,” 2018.

[3] T. S. Ankrum and A. H. Kromholz, “Structured assurance cases: Three
common standards,” in Ninth IEEE International Symposium on High-
Assurance Systems Engineering (HASE’05). IEEE, 2005, pp. 99–108.

[4] L. Cyra and J. Gorski, “Supporting compliance with security standards
by trust case templates,” in 2nd International Conference on Depend-
ability of Computer Systems (DepCoS-RELCOMEX’07). IEEE, 2007,
pp. 91–98.

[5] J. Goodenough, H. Lipson, and C. Weinstock, “Arguing security -
creating security assurance cases,” 2007.

[6] J. Knight, “The importance of security cases: Proof is good, but not
enough,” IEEE Security Privacy, vol. 13, no. 4, pp. 73–75, July 2015.

[7] R. Alexander, R. Hawkins, and T. Kelly, “Security assurance cases:
motivation and the state of the art,” High Integrity Systems Engineering
Department of Computer Science University of York Deramore Lane
York YO10 5GH, 2011.

[8] J. Spriggs, GSN-The Goal Structuring Notation: A Structured Approach
to Presenting Arguments. Springer Science & Business Media, 2012.

[9] “Claims, arguments and evidence (cae).” [Online]. Available: https:
//www.adelard.com/asce/choosing-asce/cae.html

[10] T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, and T. Olovs-
son, “Remind: A framework for the resilient design of automotive
systems,” in 2020 IEEE Secure Development (SecDev). IEEE, 2020,
pp. 81–95.

[11] B. Xu, M. Lu, and D. Zhang, “A layered argument strategy for software
security case development,” in 2017 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), Oct 2017, pp.
331–338.

[12] N. Luburić, G. Sladić, B. Milosavljević, and A. Kaplar, “Demonstrating
enterprise system security using an asset-centric security assurance
framework,” in 8th International Conference on Information Society and
Technology, 2018, p. 16.

[13] R. Hawkins, T. Kelly, J. Knight, and P. Graydon, “A new approach
to creating clear safety arguments,” in Advances in systems safety.
Springer, 2011, pp. 3–23.

[14] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security requirements
engineering: A framework for representation and analysis,” IEEE Trans-
actions on Software Engineering, vol. 34, no. 1, pp. 133–153, 2008.

[15] M. Howard and S. Lipner, The security development lifecycle. Microsoft
Press Redmond, 2006, vol. 8.

[16] International Organization for Standardization, “ISO 26262 Information
technology — Security techniques — Information security risk manage-
ment,” Geneva, Switzerland, 2018.

