Noname manuscript No.
(will be inserted by the editor)

Software Engineering Whispers:

The Effect of Textual Vs. Graphical Software Design
Descriptions on Software Design Communication

Rodi Jolak - Maxime Savary-Leblanc -
Manuela Dalibor - Andreas Wortmann -
Regina Hebig - Juraj Vincur - Ivan
Polasek - Xavier Le Pallec - Sébastien
Gérard - Michel R.V. Chaudron

Received: date / Decision: date

Abstract Context: Software engineering is a social and collaborative activity.
Communicating and sharing knowledge between software developers requires
much effort. Hence, the quality of communication plays an important role in in-
fluencing project success. To better understand the effect of communication on
project success, more in-depth empirical studies investigating this phenomenon
are needed. Objective: We investigate the effect of using a textual versus graph-
ical software design description on co-located software design communication.
Method: We conduct a family of experiments involving 240 software engineer-
ing students from four universities. We examine how different software design
representations (i.e., graphical vs. textual) influence the ability to explain, un-
derstand, recall, and actively communicate knowledge. Results: We find that
the graphical software design description is better than the textual description
in promoting active discussion and supporting the recall of design details. Fur-
thermore, compared to its unimproved version, a well-organized and motivated
textual design description (that is used for the same amount of time) enhances
the recall of design details and increases the amount of active discussions at
the cost of reducing the perceived quality of explaining.

Keywords Software Engineering - Software Design - Software Modeling -
UML - Communication - Knowledge Sharing - Graphical Representation -
Textual Representation - Family of Experiments

1 Introduction
Software engineering is a social activity and requires intensive communication

and collaboration between developers. In large companies, developers work
in different development teams and collaboratively communicate with many

R. Jolak
E-mail: rodi.jolak@cse.gu.se

Extended author information available on the last page of the article.

2 Rodi Jolak et al.

stakeholders. In such a setting, the quality of communication between the
stakeholders plays an important role in reducing the overall teams’, and thus
projects’, development effort. In a multiple-case study on challenges and efforts
of model-based software engineering approaches, Jolak et al. [30] analyzed the
distribution of efforts over different development activities in two software en-
gineering projects. Interestingly, they found that communicating and sharing
knowledge dominates the effort spent by developers. The effort on commu-
nication, as Jolak et al. found, is actually more than all of the efforts that
developers spent in any of the other observed development activities, such as,
requirements analysis, design, coding, testing, integration, and deployment.

Furthermore, poorly defined software applications (due to miscommunica-
tion between stakeholders) can affect the final structure and/or behavior of
these applications. This is in line with Jarboe et al. [2§] and Kortum et al.
[35] who consider that the quality of communication does influence developers’
activity experience and achievement, and therefore customer’s satisfaction.

The aforementioned studies underline the importance of communication
in Software Engineering (SE). They also highlight the need to study com-
munication in-depth to determine elements or criteria of its efficiency and
effectiveness. The study we present in this article is inline with this concern:
we investigate how different software architecture design representations affect
the communication of design knowledge. In particular, we compare textual vs.
graphical representations. In contrast to a tertual representation, a graphical
representation provides a two-dimensional visuospatial description of infor-
mation reflecting the actual spatial configurations of the parts of a process
or system [59]. With respect to knowledge communication, we look into the
following communication aspects:

1. Ezplaining: or knowledge donating, communicating the personal intellec-
tual capital from one person to others [12].

2. Understanding: or knowledge collecting, receiving others’ intellectual cap-
ital [12].

3. Recall: or memory recall, recognizing or recalling knowledge from memory
to produce or retrieve previously learned information [I].

4. Collaborative Interpersonal Communication [53], which includes:
(a) Active Discussion: questioning, informing, and motivating others.
(b) Creative Conflict: arguing and reasoning about others’ discussions.
(¢) Conversation Management: coordinating and acknowledging communi-

cated information.

1.1 Rationale

Kauffeld et al. [33] suggested that effective team communication and informa-
tion flow are prerequisites for the success of software development projects.
In a study on requirements practices in start-ups, Gralha et al. [T9] identified
knowledge management and communication as increasingly important strate-
gies for risk mitigation and prevention. As a consequence, research concerning
different factors influencing the degree and way in which people communicate

Software Engineering Whispers 3

and share their knowledge is actually relevant for maximizing the aforemen-
tioned advantages.

Graphical descriptions encode and present knowledge differently from tex-
tual descriptions. In particular, they provide a visuospatial representation
of information, and can recraft these information into a multitude of forms
by using fundamental graphical elements, such as dots and lines, nodes and
links [59]. Moreover, graphical descriptions encourage spatial inferences (e.g.,
inferences about the behavior, causality, and function of a system) to substi-
tute for and support abstract inferences [3]. This is inline with Moody [41],
who states that graphical and textual knowledge representations are differ-
ently processed by the human mind. Empirical evidence on how graphical
descriptions affect developer’s achievement and development productivity is
still underwhelming, as reported by Hutchinson et al. [27]. Moreover, Melid
et al. [40] report that the software engineering field lacks a body of empiri-
cal knowledge on how different representations (graphical vs. textual) could
provide support for improving software quality and development productivity.

In this study, we focus on design knowledge communication/transfer be-
tween two software developers, where, by using a graphical vs. textual software
design description, one developer is taking the role of design Ezplainer (i.e.,
design knowledge owner), and one developer is taking the role of design Re-
ceier (i.e., design knowledge receiver). Rus et al. [48] reported that greatest
challenge of companies is to retain tacit knowledge, mainly, but also explicit
knowledge (e.g., models).

Companies, such as Ericsson Software Technologyﬂ and sdé’émﬂ started
initiatives —Ericsson’s initiative is called “FEzxperience Engine’— to exchange
knowledge between developers by connecting two individuals, a problem owner
and experience communicator. The problem owner is the employee who re-
quires information or support to solve a specific problem and the experience
communicator is the employee who has in-depth knowledge of the problem do-
main. Having been connected, the experience communicator has to educate the
problem’s owner on how to solve it. The aforementioned initiatives illustrate
that our study has a practical relevance.

1.2 Objective and Contribution

We planned and conducted a family of experiments with a goal to understand
and compare the effect of using a Graphical Software Design description (GSD)
versus a Textual Software Design description (T'SD) on software design com-
munication. Through this, we contribute to the body of empirical knowledge
on the practical use of graphical versus textual software design descriptions.
Such knowledge might lead to achieving more effective software design com-
munication, which in turn would help in reducing the total effort of software
development activities. Consequently, we address the research objective by
answering the following question:

1 https://www.ericsson.com
2 https://www.capgemini.com

https://www.ericsson.com
https://www.capgemini.com

4 Rodi Jolak et al.

— R.Q.1 How does the representation of software design (graphical vs. tex-
tual) influence [Communication Aspect]?

Where the investigated [Communication Aspect]s are the following: (1) De-
sign Explaining, (2) Design Understanding, (3) Design Recall, (4) Active Dis-
cussion, (5) Creative Conflict, and (6) Conversation Management.

We first understand how each software design representation (i.e., graph-
ical/textual) affect the six aspects of communication that we described pre-
viously (i.e., explaining, understanding, recall, active discussion, creative con-
flicts, and conversation management). Then, we compare the effect of using
the graphical vs. textual software design description on the considered com-
munication aspects.

To address certain threats to external validity, we also compare the effect
of using a cohesz'veﬂ and motivatecﬁ TSD versus less cohesive and unmotivated
TSD on software design communication. In particular, we address the following
research question:

— R.Q.2 Does using a cohesive and motivated TSD influence [Communica-
tion Aspect]?

Where the investigated [Communication Aspect]s are the following: (1) De-
sign Explaining, (2) Design Understanding, (3) Design Recall, (4) Active Dis-
cussion, (5) Creative Conflict, and (6) Conversation Management.

The remainder of this paper is organized as follows: We discuss the related
work in Section [2l We describe the family of experiments in Section [3} We
present the results in Section] We discuss the results and threats to validity
in Section [5} Finally, we conclude and describe the future work in Section [6]

2 Related Work

Effective communication depends on various factors, such as personality [10],
distance [31], or knowledge representation (graphical vs. textual) [2340L50].

In a recent study on design activities of co-located and distributed collab-
orative software design [31], the authors investigate whether advanced tech-
nologies for distributed communication can replace personal meetings. The
main result is that co-located face-to-face meetings remain relevant as facial
reactions and body language are often not transmitted by current communi-
cation software. This is partly due to technical challenges, such as unstable
or slow Internet connection, that affect communication results. In contrast to
that study, our family of experiments does not investigate distributed commu-
nication and is conducted without the use of communication tool-support to
mitigate the effects of technical challenges.

Melid et al. [40] describe an experiment in which students perform mainte-
nance tasks on a graphical model and on a textual model. The authors inves-
tigate whether a model’s syntax affects subjective and objective performance

3 Cohesive: documented information or knowledge that are well-organized.
4 Motivated: augmented with design rationale.

Software Engineering Whispers 5

and whether the notation influences developer satisfaction. Objective perfor-
mance is measured by the number of correct answers in the task whereas the
subjective performance is the performance as perceived by the developer. In
the experiment, participants were divided into two groups, one group worked
with a model for selling tickets, the other group had a model for organizing
online courses. Participants received the models in textual and in a graphical
notation and were asked to find 5 errors in each notation. They also received
5 tasks in which they had to extend and modify each model. Participants us-
ing the textual notation performed significantly better in finding errors in the
domain model and also spent less time until finishing the task. Nonetheless,
participants preferred to work with the graphical notation. The authors be-
lieve this to originate from the fact that students learn graphical modelling
languages such as UML as stereotypes for domain models whereas less atten-
tion is given to textual modelling languages.

In another study, the authors measure how well participants extract the
required information (such as architectural design decisions) from different
media [23]. The researchers collected participant-specific information in two
questionnaires, filmed participants during tasks, and asked them to think out
loud. The experiment is comprised of four architectures, out of which each
consisted of a graphical and a textual description. Participants (students and
professional developers) were asked three questions per architecture. The au-
thors observed that no notation was clearly superior in communicating archi-
tecture design decisions. Nonetheless, participants tended to first look at the
graphical notation before reading the text. The authors attribute this to the
clarity of the graphic representation, which enables participants to grasp the
structure of the model more quickly.

In a case study on comparing graphical versus textual representations, the
researchers measure the accuracy and time spent to solve three requirement
comprehension tasks [50]. The study does not indicate results concerning ac-
curacy (both notations yield correct results), but participants spent less time
when working with textual requirements. Participants preferred to work with
the graphical representation nonetheless. Also, when working with a combi-
nation of graphical and textual representations, the study measured the best
results concerning time and accuracy.

Other research investigated a combined usage of textual and graphical rep-
resentations [37]. The researcher interviewed 21 practitioners to find out how
developers work with different requirements artifacts of various granularity and
notation and how they handle scattered information. The researcher found out
which artifacts the practitioners used and which problems they encountered.
A share of 70% of the interviewees reported issues when working with multi-
ple artifacts. The main shortcomings were inconsistencies and the additional
effort for documenting.

In contrast to our research, the studies described in [23l37[40,50] do not
observe communication based on using graphical and textual representations,
but how well both notations are suited to share information. Therefore, more

6 Rodi Jolak et al.

research concerning both notations as a base for explaining and discussing
software architectures is required.

Other related research aims to find out if drawing improves the recall abil-
ity, compared to making textual notes [39]. The participants of this research
were divided into two groups, younger and older adults, to measure whether
the notation influences both groups in the same way. Participants were told
30 nouns, one after the other, and asked to either draw or to note the items
textually. Afterwards, they were asked to recall and list all items. For the
drawn nouns both groups performed equally well, but for the textual words,
young adults performed better. This indicates that a graphical notation can
compensate for the age-related deficit.

To summarize the related work section, Table[l| provides a brief comparison
between the research objectives of our study and related work.

Table 1: Research objectives of our study and related work.

Work Objectives
Study the effect of using a graphical vs. textual on extracting
design decisions information.

Jolak et al. [3I] | Study the effect of distance on communication

Liskin [37] | Study the use of different requirement artifacts in practice.

Meade et al. [39] | Study the effect of drawings vs. textual notes on memory recall.
Study the effect of using a graphical vs. textual notation on
domain models maintenance.
Study the effect of using a graphical vs. textual representation
on requirement comprehension.
Study the effect of using a graphical vs. textual software design
description on face-to-face design communication.

Heijstek et al. [23]

Melid et al. [40]
Sharafi et al. [50]

Our Study

3 Experimental Design

This section describes the protocol that is used to perform the experiments
and analyze the results. In particular, we report the experiment according to
the guidelines suggested by Jedlitschka et al. [29].

3.1 Family of Experiments

Easterbrook et al. [I5] highlighted that controlled experiments help to in-
vestigate testable hypotheses where one or more independent variables are
manipulated to measure their effect on one or more dependent variables. A
family of experiments facilitates building knowledge and extracting significant
conclusions through the execution of multiple experiments pursuing the same
goal. Basili et al. [2] reported that families of experiments can help to (i) gen-
eralize findings across studies and (ii) contribute to important and relevant
hypotheses that may not be suggested by individual experiments.

We planned and conducted a family of experiments based on the method-
ology of Wohlin et al. [62]. Our family of experiments are between-subject

Software Engineering Whispers 7

designs to minimize learning effects and transfer across conditions. The family
of experiments consists of one original experiment and three external replica-
tions involving 240 participants in total (See Table. The original experiment
(OExp) was conducted at the University of Gothenburg involving a mix of 50
B.Sc. and M.Sc. Software Engineering students. In OExp, we study the effect
of using a graphical software design description (GSD) vs. textual software
design description (TSD) on software design communication. The first repli-
cation (REP1) was conducted at RWTH Aachen University with 36 M.Sc.
and Ph.D. SE students. The second replication (REP2) was conducted at the
University of Lille involving 94 M.Sc. SE students. REP1 and REP2 replicated
the original experiment as accurately as possible (strict replications [2]). The
third replication (REP3) was conducted at the Slovak University of Technology
with 60 B.Sc. and M.Sc. SE students. REP3 varied the manner in which the
original experiment was conducted, so that certain threats to external validity
were addressed. More specifically, REP3 is a replication that varies a variable
intrinsic to the object of study [2]: we study the effect of using a graphical
(GSD) vs. altered- textual software design description (A-TSD) on software
design communication. More details regarding this variation are provided in
Section

The experiment material and communication language in OExp, REP1,
and REP3 were in English. In contrast, the experimental material and com-
munication language in REP2 (which was conducted at the University of Lille,
France) were in French. The gender distribution in each experiment is also
shown in Table [2l The majority of the participants are males (79%).

Table 2: The family of experiments.

](ngg]? S.R. C.D. Context Lang. Date Participants # Females
Chalmers &
OExp GSD vs. . B.Sc. & M.Sc.
(R.Q.1) - TSD Got'henb'urg English | 11/10/18 Students 50 22%
University
RWTH
REP1 GSD vs. . M.Sc. & Ph.D. o
(R.Q.1) Yes TSD A'achcp English | 25/10/18 Students 36 17%
University
REP2 GSD vs. University
(R.Q.1) Yes TSD of Lille French 03/12/18 | M.Sc. Students | 94 26%
Slovak
REP3 No GSD Vs | (i iversity of | English 13/12/18 | M.Sc. Students | 60 15%
(R.Q.2) A-TSD
Technology
R.Q.: Research Question Total 240 21%

S.R.: Strict Replication
C.D.: Compared Designs

3.2 Scope

Developers intensively communicate ideas, decisions, progress, and updates
throughout the software development life-cycle. In this study, we focus on
investigating co-located, face-to-face software design communication.

Design communication plays a fundamental role in transferring software de-
sign decisions (i.e., instructions for software construction) from architects/ analysts

8 Rodi Jolak et al.

to programmers or other stakeholders. Also, the quality of these communica-
tions might play an important role in shaping the overall structure and be-
haviour of software products.

In co-located teams, developers usually communicate face-to-face. In dis-
tributed teams, developers use other communication channels, such as video
conferencing systems. Jolak et al. [3I] found that co-located software design
discussions are more effective than distributed design discussions. Moreover,
Storey et al. [54] stated that face-to-face communication is one of the most
important and preferred communication channel for collaborative software de-
velopment. Indeed, with face-to-face communications, developers can receive
feedback quickly which facilitates discussing through complex issues, such as
design decisions. Thus, we investigate co-located face-to-face communication,
as this type of communication is widely preferred and would therefore con-
tribute to the generalizability of our results.

Modeling languages can be (i) of general-purpose and applied to any do-
main, such as the Unified Modeling Language (UML) or (ii) domain-specific
and designed for a specific domain or context, such as the Domain Specific
Languages (DSLs). Brambilla et al. [5] stated that UML is widely known and
adapted, and comprises a set of different diagrams for describing a system from
different perspectives. Brian Dobing and Jeffrey Parsons [13] found that the
use of UML class diagrams substantially exceeds the use of any other UML
diagram (use case, sequence, activity, etc.). Thus, in order to increase the gen-
eralizability of the results of this study we chose to represent the graphical
software design description by a UML class diagram.

3.3 Participants

The population for this study was intended to match two prerequisites: (i) hav-
ing a basic knowledge in UML (especially UML class models), (ii) and being
able to understand and communicate in the experiment language. The target
group in this case is the entire group of people who posses the aforementioned
criteria: students who took an academic course in UML modeling, professional
software developers, architects, etc. However, the portion of the population to
which we had reasonable access is a subset of the target population. In partic-
ular, the accessible population for this family of experiments was the group of
B.Sc. and M.Sc. Software Engineering (SE) students at the universities where
the authors teach SE courses. The sampling approach was convenience sam-
pling. On the one hand, this sampling approach is easy and readily available.
On the other hand, the sample produced by convenience sampling might not
represent the entire population (i.e., threat to external validity or general-
izability of the results). To increase the external validity of the results, we
recruited a mix of 240 B.Sc. and M.Sc. SE students from four universities to
take a part in a family of experiments. Previously in Section (Table , we
provided details on the participants in this family of experiments.

Software Engineering Whispers 9

3.4 Experimental Treatments

The participants of each experiment were randomly assigned to two treatments
or groups:

— Group G: participants in this group had to discuss a software design as
represented by a graphical description (UML class diagram).

— Group T: participants in this group had to discuss the same software
design, but as represented by a textual description.

Furthermore, the participants of each group were randomly assigned one spe-
cific role:

— Explainer: this role consisted in: (i) understanding the design representa-
tion, and (ii) explaining it to a Receiver.

— Receiver: this role consisted in understanding the software design based
on the discussion with an Fxplainer.

Having the roles assigned, we randomly formed 120 Ezplainer- Receiver pairs.
These pairs were involved in discussing a design case which we detail in the
next Section [3.5]

3.5 Design Case and Graphical vs. Textual Descriptions

We created a design case for our family of experiments. The design case de-
scribes a structural view of a mobile application of a fitness center, the Fitness
Paradise. This fitness center gives its clients the opportunity to book facilities
and activities. The featured application enables clients to consult the schedule
of activities, manage bookings, keep track of payments, and visualize perfor-
mance data when available. We believe that the selected design case relies on
a familiar domain, Sport and Gym, from everyday life which is quite popular
and easy to understand without prior knowledge.

To introduce the Fzxplainers with the design case, we created a design case
speciﬁcatio document which describes the fitness center and lists the features
of the mobile application in natural language.

3.5.1 Design Descriptions

We played the role of the designer/architect and created the two design rep-
resentations (i.e., GSD and TSD). The GSD and TSD provide the same infor-
mation and describe one structural design of the Fitness Paradise app. The
two design descriptions only differ in the way they represent the design (i.e.,
graphical vs. textual).

— GSD. We created the UML class diagram{] of the design case. The di-
agram includes 28 classes (21 model entities, 3 controllers, and 4 views)

5 http://rodijolak.com/SE_Whispers/Design_Case.pdf
6 http://rodijolak.com/SE_Whispers/GSD.pdf

http://rodijolak.com/SE_Whispers/Design_Case.pdf
http://rodijolak.com/SE_Whispers/GSD.pdf

10 Rodi Jolak et al.

and 30 relationships. We chose to use the Model View Controller (MVC)
design pattern for structuring the design, as this pattern is well known by
the participants of the experiments. The entities of each part of the MVC
were given a specific color. The model entities have a yellow color, the
controllers are in blue, and the views are in green. The colors were added
to the entities in the GSD in order to mimic the characteristic of struc-
tured textual document (which we describe next) in facilitating a visual
distinction between different sections (i.e., the three parts of the MVC).

— TSD. For EXP, REP1, and REP2, each element of the GSD was sys-
tematically used to create exactly one corresponding element (e.g., one
paragraph or sentence) in the textual description, thus to maintain a one-
to-one correspondence between GSD and TSD. In other words, we were
thoroughly keen to make both the graphical and textual designs present
the exact same amount of information or design knowledge in order to con-
trol eventual bias due to a different amount of information. The textual
descriptiorﬂ was arranged into two main structured sections. In the first
section, we orderly described the entities of each module of the MVC: First
the entities of the model part, then the entities of the controller part, and
last the entities of the view part. In the second section, we described the
relationships between the entities following the same appearance order of
the entities.

— Altered TSD. In REP3, we used an altered TSlﬂ to know whether or
not a motivated and cohesive TSD could affect design communication dif-
ferently from the original TSD.

(i) Motivated: We added an introduction to the original textual description,
including a rationale of the chosen design pattern (i.e., MVC).

(ii) Cohesive: The textual design description was organized differently. In
particular, the description of the relationships of each entity was moved
and placed right after the description of the entity. In this way, information
regarding each entity and its relationships are close to each other, instead
of being distant/remote (i.e., located on different pages), as in the original
textual description.

3.6 Tasks

The main task of this family of experiments was inspired by the Chinese Whis-
pers (or The Telephone) game. In this game, players form a line, and the first
player comes up with a message and whispers it to the ear of the second person
in the line. The second player repeats the message to the third player, and so
on. When the last player is reached, they announce the message they heard to
the entire group.

In contrast, we created a message (i.e., a software design representation),
and asked the first player (i.e., the Ezplainer) to first understand the mes-

7 http://rodijolak.com/SE_Whispers/TSD.pdf
8 http://rodijolak.com/SE_Whispers/Altered_TSD.pdf

http://rodijolak.com/SE_Whispers/TSD.pdf
http://rodijolak.com/SE_Whispers/Altered_TSD.pdf

Software Engineering Whispers 11

sage then explain it to the second player (i.e., the Receiver). After that, the
players (i.e., Fzplainers and Receivers) have to announce the message (i.e.,
via answering a post-task questionnaire). Finally, the original message (i.e.,
the software design representations) is compared with the final version (i.e.,
knowledge of Ezplainers and Receivers).

The main task of the experiments reflects common scenarios in software en-
gineering industry where developers collaborate, communicate, and exchange
knowledge in order to create software. For example, the main task reflects a
common knowledge-transfer scenario between a software architect (i.e., Ex-
plainer) who owns knowledge on the structure and behavior of the software
system and a software developer (i.e., Receiver) who needs to receive and un-
derstand the knowledge of the architect in order to start coding. Moreover,
knowledge communication is especially important when new employees enter
a company and struggle to learn the existing tacit knowledge. In this direction,
our task reflects the scenario of onboarding of novice developers by experienced
developers (e.g., Ericsson’s “Ezperience Engine” initiative (cf. [section 1J)).

In addition to the main task, we added two secondary tasks to collect com-
plementary data, such as participants’ design experience and communication
skills that are also needed for data analysis and results’ discussion.

For the study, the participants had to perform the following three tasks:

1. Answer the pre-task questionnaire. All participants have to answer
the pre-task questionnaire based on the group they are assigned to. No
time-limit is imposed for this task. We noted the required time for this step
during the experiments and found that it takes 15 minutes on average.
The pre-task questionnaire is developed to collect participants’ design expe-
riences and communication skills based on self-evaluations. The questions
in the pre-task questionnaire vary according to the role of the participant
(Explainer vs. Receiver) and his/her group (G vs. T).

— G-Explainer: participants belonging to this subset have to answer
questions on (i) familiarity with software design and UML modeling,
(ii) how good are they in understanding and sense—makingﬂ of UML
models, an English/French conversation, and explaining their knowl-
edge to others.

— G-Receiver: participants belonging to this subset have to answer ques-
tions on (i) familiarity with software design and UML modeling, (ii) how
good are they in understanding and sense-making of UML models, an
English /French conversation, and building knowledge from conversing
with others.

— T-Explainer: participants belonging to this subset have to answer
questions on (i) familiarity with software design, (ii) how good are they
in reading, understanding, and sense-making of an English/French text,
understanding and sense-making of an English/French conversation,
and explaining their knowledge to others.

9 Developing the understanding of a concept by connecting it with existing knowledge

12

Rodi Jolak et al.

2.

— T-Receiver: participants belonging to this subset have to answer ques-
tions on (i) familiarity with software design, (ii) how good are they in
understanding and sense-making of an English/French conversation,
and building knowledge from conversing with others.

Discuss the Design (i.e., transfer design knowledge). Each Explainer
receives a design case specification plus either a GSD or TSD, based on
Ezplainer’s group (G or T). The Ezplainer has to read and understand the
received artifacts, as good as he/she can, in 20 minutes (defined based on
to the pilot studies, see Section . The Ezplainers are allowed to in-
dividually ask questions to experiment supervisors to clarify issues related
to the design, if required.

After 20 minutes, the Ezplainers give the design case specification back
to the supervisors, but keep the design description (GSD or TSD). Each
Ezplainer is randomly paired with a Receiver from the same group. Then,
each Explainer-Receiver pair is given 12 minutes (defined based on to the
pilot studies, see Section to discuss the design, where the Ezplainer
has to explain the design and the Receiver has to understand the design.
The Receivers can unhesitatingly ask questions. Moreover to help the un-
derstanding process, Receivers are allowed to take notes during the discus-
sion, but all notes are collected by the supervisors before the next task.
This is because two of the communication aspects, Understanding and Re-
call, that we measure require the participants to, respectively, apply and
remember the design knowledge without using the design descriptions or
the notes that they took during the discussions.

Answer the post-task questionnaire. All participants have to answer
the post-task questionnaire based on their groups. No time-limit is imposed
for this task. We also noted the required time for this step and found that
it takes 15 minutes on average.

The first part of the post-task questionnaire is developed to collect partici-
pants’ self-evaluations of their experiences just after the design discussion.
The questions vary according to the role of the participant (Explainer vs.
Receiver) and his/her group (G vs. T).

— G-Explainer: participants belonging to this subset have to answer
questions on (i) how good they are in remembering UML models, (ii)
how well they did understand and explain the design, and (iii) how much
diagrams did help them in understanding and explaining the design.

— G-Receiver: participants belonging to this subset have to answer ques-
tions on (i) how good they are in remembering UML diagrams, (ii) how
well they did understand the design from the discussion with the Ez-
plainer, and (ili) how much diagrams did help them in understanding
the design.

— T-Explainer: participants belonging to this subset have to answer
questions on (i) how good they are in remembering a English/French
text, (ii) how well they did understand and explain the design, and (iii)

Software Engineering Whispers 13

in case they could have used them, how much diagrams would have
helped in understanding and explaining the design.

— T-Receiver: participants belonging to this subset have to answer ques-
tions on (i) how good they are in remembering a English/French text,
(ii) how well they did understand the design from the discussion with
the Explainer, and (iii) in case they could have used them, how much
diagrams would have helped in understanding the design.

The second part of the post-task questionnaire evaluates participants’ un-
derstanding and recall abilities.

To measure the Recall, we formulated ten question@ challenging partici-
pants’ recall abilities. Two of these questions are open requiring free-text
answers, six questions are multiple-choice questions which require the par-
ticipants to choose only one choice, and two questions are check-boxes
questions which require to select one or more answers from the available.
To measure the Understanding, we formulated three questionﬂ focusing
on MVC design maintenance (using maintenance questions to measure un-
derstanding is motivated in Section . In each question we introduce
a design maintenance (i.e., evolution) scenario and suggest four ways to
address it. The three questions are multiple-choice questions which require
the participants to choose only one choice from 4 provided choices.

To evaluate the answers of the participants on recall and understanding
questions, we defined grading rules that can be consulted onlin@

Remark. In REP2 (University of Lille), the pre- and post-task questionnaires,
design case specification, GSD, and TSD were translated to French, as the SE
course that the participants are frequenting is in French. During the transla-
tion process, each word was carefully chosen to match the semantics of the
original English textual description as close as possible. To maintain a strict
replication, after the translation process we thoroughly did review the afore-
mentioned artifacts and ensured that the amount of information/knowledge
they convey is the same as provided by the artifacts used in the original ex-
periment (OExp).

3.7 Variables and Hypotheses

The goal of this study is to compare between the effect of using GSD versus
TSD on software design communication. The only independent variable and
manipulated factor is the design description. This variable is nominal and
corresponds to two treatments/groups: G group using GSD and T group using
TSD. In this study, we consider six dependent variables (See Table . These
variables correspond to the six communication aspects which we described in
the introduction.

10 http://rodijolak.com/SE_Whispers/Recall_Q.pdf
11 http://rodijolak.com/SE_Whispers/Understanding_Q.pdf
12 http://rodijolak.com/SE_Whispers/Grading_Rules.pdf

http://rodijolak.com/SE_Whispers/Recall_Q.pdf
http://rodijolak.com/SE_Whispers/Understanding_Q.pdf
http://rodijolak.com/SE_Whispers/Grading_Rules.pdf

14 Rodi Jolak et al.

Table 3: Dependent variables and measurement.

Dependent Variable | Measure Source Measurement Measurement
Instrument Scale
Explaining . Lo 2 Questions 5-point Likert Scale
(EXP) Ordinal Subjective (Perceptions) Very Poor - Very Good
Understanding L . . e Total Score from
(UND) Interval Objective | 3 Maintenance Questions 0 to Max 3 Points
Recall Lo . Total Score from
(REC) Interval Objective 10 Recall Questions 0 to Max 10 Points
Active Discussion Rati Objecti Counting Occurrences in AD/(AD+CC+CM)
(AD) atio PN Recorded Conversations Values from 0 to 1
Creative Conflict Ratio Obective Counting Occurrences in CC/(AD+CC+CM)
(CC)) Recorded Conversations Values from 0 to 1
Conversation Mgt. . N Counting Occurrences in CM/(AD+CC+CM)
(CM) IRl Objective Recorded Conversations Values from 0 to 1

The original experiment and replications were conducted under the same
environment conditions and by following a well-defined protocol to ensure that
the impact of any other variable on the results is relatively negligible.

For OExp, REP1, and REP2, we formulate and study the following null
H, and alternative hypotheses Hg:

e HEXP{: The design description [has no impact]o/[has impact], on EXP.
HUND{: The design description [has no impact]o/[has impact], on UND.
HRECY: The design description [has no impact]o/[has impact], on REC.

HAD{ : The design description [has no impact]o/[has impact], on AD.

HCCY : The design description [has no impact]o/[has impact], on CC.

HCM¢{ : The design description [has no impact]o/[has impact], on CM.

REP3 varies one variable intrinsic to the object of study (i.e., the indepen-
dent variable TSD). Accordingly, we study the following null Hy and alterna-
tive hypothesis Hf :

e HTSD{: A motivated and cohesive TSD [has no impact]o/[has impact],
on the communication aspect.

3.7.1 Experiment Procedure

Before presenting the experiment procedure, we would like to highlight that we
conducted several pilot studies, 2 in the university of Gothenburg, 1 in Aachen
university, 1 in Lille university, and 1 in the Slovak university. To cover the
treatments of our study, each pilot study involved 2 Ezxplainer- Receiver pairs
(B.Sc., M.Sc., or PhD students in SE). One pair was assigned to the G group
using a graphical design description, and the second pair was assigned to the
T group using a textual design description. These pilot studies helped us in:

— Designing a research protocol and assessing whether or not it is realistic
and workable, especially in estimating the time that is required by: (i) the
Ezplainer to understand the design (20 minutes), and (ii) the Ezplainer
and Receiver to discuss the design (12 minutes).

Software Engineering Whispers 15

— Identifying logistical problems and determining what resources (e.g, super-
visors, software, and rooms) are needed for the actual experiments.
— Training the supervisors of the experiments.

The experiment procedure was created to define the process of the exper-
iment and to ensure strict replications of the original experiment. Figure
presents the four main steps of the experimentation procedure:

— Step 1: To anonymize their identity and thus their answers, all partic-
ipants were randomly assigned an identification number (ID). We asked
the participants to bring their PCs to be able to answer the online pre-
and post-task questionnaires. Eduroam Internet connection was available
in the rooms where the experiments were running. Also, we asked the par-
ticipants to bring a device to record the discussions (either by downloading
audio-recording software on their PCs or by using a smart-phone with a
recording application). We booked large university lecture-rooms which can
host all Ezplainer- Receiver pairs with a sufficient distance between each
pair. This helps to reduce voice interference to a minimum and produce
better-quality audio recordings. We randomly assigned the participants to
two groups (G and T). Furthermore, we randomly assigned each partici-
pant one role, Explainer or Receiver. After that, we asked the participants
to answer the pre-task questionnaire.

— Step 2: Once all participants filled the pre-task questionnaire, the Ezplain-
ers were taken to a second room where they received the design case spec-
ification and the design description (GSD or TSD). The Explainers were
asked to understand the design that they received as good as they can in
20 minutes. During this time, the Receivers ensured that their recording
software/devices were working as expected.

— Step 3: After 20 minutes, we took the design case specification from the
Ezxplainers, but let them keep the assigned design description (GSD or
TSD). The Ezplainers and Receivers were randomly grouped in pairs in
one or two rooms according to the number of participants and room’s ca-
pacity. The pairs were then informed that, using the design descriptions
(GSD or TSD), Ezplainers should explain the design to the Receivers in
12 minutes. We also informed the pairs that Receivers can ask clarification
questions to the Ezplainers. When all participants were prepared, we asked
the participants to start the audio recorder software and begin the discus-
sions by introducing themselves (by mentioning the name/ID and role).
This allowed us later to match the discussion records of the participants
with their corresponding answers to the questionnaires.

— Step 4: After 12 minutes, the participants were informed that they should
stop the audio recording. All documents, including Receivers’ draft notes,
were collected. Then, we asked all the participants to answer the post-task
questionnaire individually. Lastly, we asked the participants to rename the
audio recordings with their ID numbers and put the recordings in a USB
flash drive that we provided.

16

Rodi Jolak et al.

Pre-task
Questionnaire
w J

Explainer

Design case
specifications

T

=)

Explainer\

Post-task
Questionnaire
w J

Explainer

Explainer 1

Textual OR Graphical

e
/!

=ile <)

(] []
Receiver \ Receiver ‘

design
Receiver
Pre-task RECORDING Post-task
Questionnaire DISCUSSION Questionnaire
PRE-TASK REFLECTION EXPLANATION POST-TASK
QUESTIONNAIRES ON THE ARTIFACT OF THE ARTIFACT QUESTIONNAIRES

Fig. 1: The four main steps of the experimentation procedure.

3.8 Data Analysis

The data of this study was collected via questionnaires and by audio-recording
discussions between Ezplainers and Receivers. In this section, we describe three
types of analysis procedures that we used:

— Data Set Preparation: To check and organize data collected from different
sources and prepare it for analysis.

— Descriptive Statistics: To describe the basic features of the data by sum-
marizing and showing measures in a meaningful way such that patterns
might emerge from the data.

— Hypothesis Testing: To make statistical decisions by evaluating two mutu-
ally exclusive statements about a population and determining which state-
ment is best supported by the sample data.

— Meta-Analysis: To obtain a global effect of a factor on a dependent variable
by combining the effect size of different experiments, as well as assessing
the consistency of the effect across the individual experiments [4].

3.8.1 Data Set Preparation

Data from 14 participants (7 pairs) were eliminated: 1 Ezplainer- Receiver
pair from OExp as well as REP1, and 5 pairs from REP2. In particular, 5
pairs discussed the design assignment for too short time (less than 2 minutes)
and decided to discuss other topics of their interest for the rest of the time.
Moreover, the audio quality of the recorded discussion of 2 pairs was bad and
the corresponding data from these pairs was eliminated. The final number of
participants in each experiment is provided in Table [4]

Software Engineering Whispers 17

Table 4: Final number of participants.

ExpID Insl:;;s;eﬁsf FSl:zligljjstSOf Ehrl:r)l;?!:ted Reason of Elimination
OExp 50 48 1 - Bad quality of recorded discussion
REP1 36 34 1 - Too short discussion time (<2 minutes)
- - Too short discussion time (<2 minutes) (4 cases)
REP2 94 84 o - Bad quality of recorded discussion (1 case)
REP3 60 60 0 N/A
Total 240 226 7 pairs

The discussions between Ezplainers and Receivers were recorded by using
either mobile phones or Audacity, an easy-to-use audio editor and recorder
that works on multiple operative systemﬂ We transcribed approximately
23 hours of audio recordings and performed a manual coding of more than
2000 discussion records between Explainers and Receivers. For coding the dis-
cussions, we used the collaborative interpersonal problem-solving skill taxon-
omy of Margaret McManus and Robert Aiken [38], as presented in Figure
This taxonomy captures the collaborative interpersonal communication as-
pects; Active Discussion, Creative Conflict, and Conversation Management,
which we described previously in Section [I] For instance, the following tran-
scribed sentence: “Can you explain why/how?” is a Request for Clarification
which contributes to Active Discussion. Another example: “If... then” refers
to Suppose; one of the categories of Argue which contributes to a Creative
Conflict. More examples are provided onlinﬂ

NVivﬂ was used for coding the transcriptions. Prior to coding, we ensured
coding/rating’s reliability by performing two-way mixed Intraclass Correlation
Coefficient (I-C-C) tests with 95% confidence interval on 9% of the data. In
particular, three coders/rater were involved in measuring the I-C-C of the G
group and T group of EXP, REP1, and REP2 (I-C-C value is 0,97 for group G
and 0,96 for group T). Whereas, two coders/raters were involved for measuring
the I-C-C of the G group and T group of REP3 (I-C-C value is 0,83 for group
G and 0,92 for group T). The coding/rating reliability is positive. Indeed,
according to [34], I-C-C is good when it is > 0,75 and < 0,90 and excellent
when it is > 0,90. Based on this result, the raters collaboratively continued to
code the rest of the data i.e., 91% of the data.

3.8.2 Descriptive Statistics

By using IBM SPSS‘E we generated descriptive statistics, including Boz-plots
and Mean +/- 15D plots, to analyze the collected data via questionnaires
and audio recordings. In particular, we measured: means, medians, standard
deviations, and ranges. These descriptive statistics help to analyze central
tendencies and dispersion.

13
14
15
16

https://www.audacityteam.org
http://rodijolak.com/SE_Whispers/Problem_Solving_Skill_Taxonomy.pdf
https://www.gsrinternational.com/nvivo
https://wuw.ibm.com/analytics/spss-statistics-software

https://www.audacityteam.org
http://rodijolak.com/SE_Whispers/Problem_Solving_Skill_Taxonomy.pdf
https://www.qsrinternational.com/nvivo
https://www.ibm.com/analytics/spss-statistics-software

18 Rodi Jolak et al.

Collaborative Problem-Solving Conversation Skills

v
.
Conversation Management . N . . .
anag Active Discussion Creative ‘Confl|ct
v v v v v . v v
Maintenance Task Acknowledge Request Inform Motivate Mediate Argue
» [oxm 35 =m o-oemm m wUVOST
c@@ﬁ‘g cgzg) @%g gcacg_)ﬁ? cman—,g g: 5 cag?«oogg)g
geeg 322¢ ©TQ S5£%2%c3 8R2%S o EX 2 388%c933
o008 3085S 28T 52388 F o <283 S c g 8% Z8Zo
2R =t o 0 =3 2. S 0 =g 4] S o 3 7] = D D
s~ -@ N S T2) L= =9 - =3 =] I o®F o2
>or» © Ngog =0 5959075 o o @ m3 @
Qo °so2 g 53753 2 X3
=S =25 @
§232 X E g g3
30 395§ 3 3 =
=] 33 @ S
== o5 o
o = Q o
> S o
> @
(2]
w

Fig. 2: Collaborative interpersonal problem-solving conversation skills [38].

3.8.3 Hypotheses Testing

In the family of experiments, we wanted to compare two treatments/groups (G
and T). So, we assigned our participants to these two groups by following the
between-subjects design. In this setting, different people test each condition
to reduce learning- and transfer-across-conditions effects. The collected data
during the experiments include both interval and ordinal measures. Moreover,
they are not normally distributed. Thus, we used non-parametric tests.

In particular, the hypotheses that we formulated in Section seek to de-
termine whether two independent samples have the same distribution. There-

fore, these hypotheses were tested by performing the non-parametric independent-

samples Mann-Whitney test.
3.8.4 Meta-Analysis

We perform a fixed-effect meta-analysis, as all factors that could influence
the effect size are the same in all the experiments [4]. We use different scales
to measure the communications aspects. Thus, for each experiment (i), we
compute the effect size (G;) by calculating the Hedges’ g metric [22]. The
assigned weight to each experiment is:
1
W; = Va, (1)
where, Vg, is the within-experiment variance for the ith experiment.
We obtain the global effect size by calculating the weighted mean M:

k
M= D:}: WiG;
2 Wi

Software Engineering Whispers 19

According to [22], the effect size is small when g > 0,2; medium when g
> 0,5; and large when g > 0,8. We report the result of the meta-analysis by
using forest plots [4].

4 Results

In the first part of this section, we report the participants’ perceptions of their
design experiences and communication skills (the results of the pre-task ques-
tionnaire). After that, we present the results of the individual experiments and
the performed meta-analysis. Finally, we report the participants’ perceptions
of their experience in working with different design representations (the results
of the post-task questionnaire).

4.1 Perceived Design Experience and Communication Skills

The perceived (based on self-evaluations) design experience and communica-
tion skills are detailed herdﬂ In summary, we find that:

— the participants are somewhat familiar with software design.

— the participants are familiar with software modeling and good in under-
standing and sense-making of UML models.

— the participants are very good in reading, understanding, and sense-making
of textual documentation.

— the Ezplainers in the group G are neither poor nor good in explaining their
knowledge, while the Explainers in the group T are good in explaining their
knowledge.

— the Receivers of the two groups (G and T) are good in building knowledge
from conversing with others.

There are no statistically significant differences in the perceived design ex-
perience and communication skills between groups G and T in the different
experiments. Accordingly, we assume that the design experience and commu-
nication skills of participants are not influencing the results of this study.

4.2 Individual Experiments

Table [5| shows the descriptive statistics of the studied communication aspects
sorted by two subgroups of studies:

o Subgroup A: including OExp, REP1, and REP2.
e Subgroup B: including REP3.

Considering Subgroup A, we observe that the unbiased estimate of the ef-
fect size, based on the standardized mean difference between group G and
T (Hedges’g [22]), is positive for Ezplaining, Recall, Active Discussion, and
Creative Conflict. This means that there is a clear tendency in favor of using

17 http://rodijolak.com/SE_Whispers/PreTask_Results.pdf
P j p p

http://rodijolak.com/SE_Whispers/PreTask_Results.pdf

20 Rodi Jolak et al.

Table 5: Descriptive statistics.

Study ID Dept. GSD TSD %
(Subgroup) Var. Mean | Median | Std. Dev. | Mean | Median | Std. Dev. g
EXP 3,864 4,000 0,710 3,654 4,000 0,689 0,295
UND | 1,545 | 1,750 0,754 1,808 | 2,000 0,906 -0,307
OExp REC 5,843 5,535 1,828 5,418 5,205 2,368 0,195
(A) AD 0,512 | 0,494 0,094 0,461 | 0,500 0,137 0,412
cC 0,267 | 0,272 0,053 0,234 | 0,224 0,080 0,466
oM 0,221 | 0,209 0,088 0,305 | 0,244 0,172 -0,580
EXP | 3,900 | 4,000 0,553 3,563 | 4,000 1,209 0,365
UND 1,875 2,000 0,741 1,625 1,750 0,806 0,317
REP1 REC | 6973 | 7,165 1,747 5598 | 6,125 1,981 0,725
(A) AD 0,457 0,447 0,107 0,409 0,411 0,063 0,505
cC 0,166 | 0,189 0,067 | 0,118 | 0,121 0,053 0,745
CM 0,377 0,406 0,124 0,473 0,488 0,085 -0,841
EXP | 3,810 | 4,000 0,634 3,714 | 4,000 0,708 0,140
UND | 1,905 | 2,000 0,813 1,619 | 1,500 0,847 0,341
REP2 REC | 5876 | 5,960 1,685 5537 | 5,585 1,787 0,193
AD 0,488 | 0,495 0,068 0,431 | 0,435 0,074 0,786
cC 0,267 | 0,250 0,097 0,265 | 0,249 0,082 0,020
CcM 0,245 | 0,220 0,086 0,304 | 0,306 0,056 0,793
Study ID Dept. GSD Altered-TSD %
(Subgroup) Var. Mean | Median | Std. Dev. | Mean | Median | Std. Dev. 8
EXP 4,833 5,000 0,379 3,967 4,000 0,964 1,168
UND | 1,967 | 2,000 0,798 1,800 | 2,000 0,726 0,216
REP3 REC 5,948 6,160 1,975 6,664 7,080 2,226 -0,336
(B) AD 0,571 | 0,564 0,078 0,625 | 0,627 0,110 -0,546
CC 0,184 0,162 0,069 0,113 0,118 0,058 1,086
CM 0,245 | 0,232 0,069 0,262 | 0,255 0,114 | -0,179

* Hedges’g: unbiased estimate of the effect size based on the standardized mean difference [22].

GSD over TSD. Regarding Understanding, the participants achieved better
results when using TSD in OExp (negative g value). In contrast, the partici-
pants of REP1 and REP2 achieved better results when using GSD. Regarding
Conversation Management, the results show that the participants of all the
experiments spent more effort on conversation management when using TSD.

Considering Subgroup B, we observe that the unbiased estimate of the
effect size (i.e., Hedges’g) is positive for Ezplaining, Understanding, and Cre-
atiwve Conflict. This means that there is a clear tendency in favor of using GSD
over Altered-TSD. Regarding Recall and Active Discussion, the participants
achieved better results when using the Altered-TSD. Moreover, the partici-
pants spent more effort on conversation management when using Altered-TSD.

We tested whether or not the distribution of the communication aspects
(i.e., dependent variables) is the same across the two groups (G and T) by
running the Independent-Samples Mann-Whitney U Test.

Table [6] shows the results of the test. The p-value is the probability of
obtaining the observed results of a test, assuming that the null hypothesis is
correct. We set the probability of type I error (i.e., «, probability of finding a
significance where there is none) to 0,05. The statistical power is the proba-
bility that a test will reject a null hypothesis when it is in fact false. As the
power increases, the probability of making a type II error (-value) decreases.
A power value of 0,80 is considered as a standard for adequacy [16]. S-value
is used to estimate the probability of accepting the null hypothesis when it is
false.

Software Engineering Whispers 21

Table 6: Independent variables Mann Whitney Test.

ID Subjects # . Mann Whitney Test
(Subgroup) | (Sample Size) Dt Veni p-value | Statistical Power [-value

Explaining 0,367 0,168 0,832
Understanding 0,300 0,179 0,821
OExp 48 Recall 0,501 0,101 0,899
(A) Group G (22) | Active Discussion 0,622 0,167 0,833
Group T (26) | Creative Conflict 0,140 0,198 0,802
Conversation Mgt. 0,284 0,188 0,812
Explaining 0,519 0,184 0,816
Understanding 0,342 0,151 0,849
REP1 34 Recall 0,037 0,554 0,446
(A) Group G (18) | Active Discussion 0,374 0,184 0,816
Group T (16) | Creative Conflict 0,110 0,550 0,450
Conversation Mgt. 0,091 0,414 0,586
Explaining 0,636 0,097 0,903
Understanding 0,152 0,332 0,668
REP2 84 Recall 0,350 0,139 0,861
(A) Group G (43) | Active Discussion 0,010 0,694 0,306
Group T (41) | Creative Conflict 0,990 0,050 - 0,950
Conversation Mgt. 0,011 0,705 0,295

ID Subjects # . Mann Whitney Test

(Subgroup) | (Sample Size) IDepeaeEm Verkbe p-value | Statistical Power B-value

Explaining 0,000 0,991 0,009
Understanding 0,330 0,127 0,873
REP3 60 Recall 0,115 0,239 0,761
(B) Group G (30) | Active Discussion 0,171 0,291 0,709
Group T (30) | Creative Conflict 0,017 0,800 0,200
Conversation Mgt. 0,740 0,075 0,925

Considering Subgroup A, we observe in REP1 that there is a statistically
significant difference in Recall between the two groups G and T (p-value =
0,037 < 0,05, statistical power is 0,554). In REP2, we observe that there is
a statistically significant difference in Active Discussion and in Conversation
Management between the two studied groups (p-values = 0,010 and 0,011 <
0,05, statistical powers are 0,694 and 0,705, respectively).

Considering Subgroup B, we observe a statistically significant difference in
Ezplaining and Creative Conflict between the two studied groups (p-values =
0,000 and 0,017 < 0,05, statistical powers are 0,991 and 0,800, respectively).

4.3 Meta-Analysis

In this section, we report and discuss the meta-analysis by means of forest
plots. The squares in each forest plot indicate the effect size of each experiment.
The size of the squares represents the relative weight (squares are proportional
in size to experiments’ relative weight). The horizontal lines on the sides of
each square represents the 95% confidence interval. The diamond shows the
global effect size (the location of the diamond represents the effect size), while
its width reflects the precision of the estimate (i.e., 95% confidence interval).
The plot also shows the values of the effect size, weight, and p-value relative
to each experiment and to the global measure.

Positive values of the effect size indicate that the use of GSD increases/ im-
proves the effort/quality of the communication aspect, while negative values
indicate that using TSD/Altered-TSD is the increasing/improving condition.

22 Rodi Jolak et al.

Perceived Quality of Explaining
Study Effect Size Relative p-Value Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <0,05
OExp 0,295 29% 0,303 ——
REP1 0,365 21% 0,269 |
REP2 0,140 50% 0,517 L
A 0,233 100% 0,128 ®
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B
(REP3) 1,168 100% 0,000 el
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD

Fig. 3: Meta-analysis for the perceived quality of Explaining.

4.3.1 Ezplaining

Figure [3| shows the forest plot for perceived quality of Fxplaining in the two
subgroups of studies, A and B. We observe that the effect size values are
positive in all the experiments. This implies that using a GSD has a positive
effect on perceived Explaining quality. In other words, the participants’ level of
perceived explaining is better when using the GSD. Despite this tendency, the
global effect size of the studies within Subgroup A is not statistically significant
(p-value is 0,128 > 0,05). In contrast, the global effect size of the study in
Subgroup B is statistically significant (p-value is 0,000 < 0,05).

Observation 1 (Quality of Explaining).

We find that using a GSD has a positive effect on perceived Explaining quality.
Considering Subgroup A, this effect is not statistically significant. Considering
Subgroup B, the effect is statistically significant. This suggests that the perceived
quality of design explaining is better when using a GSD than Altered-TSD.

4.3.2 Understanding and Recall

In a revised Bloom’s taxonomy, Anderson et al. [I] outline a hierarchy of
cognitive-learning levels ranging from remembering of a specific topic, over
understanding and application of such knowledge, to advanced levels of analy-
sis, evaluation, and creation. Figure [d] shows the hierarchy of the six cognitive
learning levels. According to Anderson, remember is the recalling of the previ-
ously learned topic. understand is the ability to grasp the meaning of the topic

Software Engineering Whispers 23

N\

| Create ‘

| Evaluate ‘

| Analyze ‘

Apply
Understand

| Remember ‘

Fig. 4: Bloom’s taxonomy of cognitive learning.

by interpreting the knowledge and predicting future trends. Apply instead,
comes on top of understand. It is the ability to use the acquired and com-
prehended knowledge in a new and concrete context or situation. In order to
measure the quality of understanding of our experiments’ participants, we for-
mulated three questions on design maintenance (these questions are provided
in Section which required the participants to use/apply their acquired
knowledge in a new context (i.e., apply in Anderson’s revised taxonomy).

The participants in the two groups (G and T') answered ten recall questions.
We formulated the recall questions (see Section to evaluate how well the
participants do remember the design details after the discussions.

Figure [5| shows the forest plot for quality of (a) Understanding and (b)
Recall ability of design details. Regarding the quality of Understanding, the
effect size value is negative for OExp, which means that TSD is the improving
condition. For the other experiments in subgroups A and B the values of the
effect size are positive. This implies that using a GSD in these experiments
has a positive effect on the understanding quality. Despite these tendencies,
the global effect size of subgroups A and B is not statistically significant (p-
values are 0,329 and 0,399, respectively). Considering the Recall ability, we
observe that the effect size values in subgroup A are positive. This implies
that using a GSD has a positive effect on the Recall ability. This effect is
statistically significant and has a medium effect size for REP1. Furthermore,
the global effect size is statistically significant (p-value = 0,048 < 0,05). In
contrast, the effect size value in subgroup B is negative. This implies that
using a Altered-TSD is the improving condition. However, the effect is not
statistically significant (p-value = 0,191 > 0,05).

Observation 2 (Quality of Understanding).

In OFExp, we find that using a TSD has an advantage in improving Under-
standing. Whereas in the other experiments (REP1, REP2, and REP3), we
find that using a GSD 1is the improving condition. Globally, there is no sta-
tistically significant difference in the quality of understanding between the two
groups: G and T.

24 Rodi Jolak et al.

Observation 3 (Recall Ability).

Considering the experiments of Subgroup A, we find that using a GSD has
a positive, statistically significant effect on Recall ability. This suggests that
using a GSD during design communication has an advantage over TSD in
improving the recall of design details. In REPS3, we find that using a Altered-

TSD has an advantage in improving the Recall ability. However, the effect is
not statistically significant.

Understanding
Study EffectSize Relative p-Value Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <0,05
OExp - 0,307 29% 0,284 —a—
REP1 0,317 21% 0,337 —
REP2 0,341 50% 0,117 ——
A 0,150 100% 0,329 8
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B
(REpy 0216 100% 0399 —~—
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(a)
Recall

Study Effect Size Relative p-Value

A d Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <0,05

OExp 0,195 29% 0,494 S —
REPL 0,725 21% 0,032 —a—
REP2 0,193 50% 0,372 —i—
A 0,304 100% 0,048 -
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B
(REPy) 033 100% 0,101 i
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(b)

Fig. 5: Meta-analysis for quality of Understanding (a) and Recall ability (b).

Software Engineering Whispers 25

4.8.8 Interpersonal Communication

Figure [6] shows the the forest plot for collaborative interpersonal communica-
tion dimensions: Active Discussion (AD), Creative Conflict (CC), and Con-
versation Management (CM).

Considering AD, we observe that the effect size values of Subgroup A studies
are positive. This implies that using a GSD has a positive effect on the amount
of ADs. The global effect size for AD is statistically significant (p-value = 0,005
< 0,05). The effect size value of Subgroup B study is negative. This implies
that using a Altered-TSD is the improving condition. However, the effect size
of the study in Subgroup B is not statistically significant (p-value = 0,131).

Considering CC, we observe that the effect size values of all the studies are
positive. This implies that using a GSD has a positive effect on the amount
of CCs. The global effect size of Subgroup A is not statistically significant
(p-value = 0,162 > 0,05). In contrast, the effect size of Subgroup B study is
statistically significant (p-value = 0,004 < 0,05).

Considering CM, we observe that the effect size values of all the stud-
ies are negative. This implies that the effort on CM is bigger when using
TSD/Altered-TSD. The global effect size of Subgroup A is medium and sta-
tistically significant (p-value = 0,001 < 0,05). The effect size of the study in
Subgroup B is not statistically significant (p-value = 0,615 > 0,05).

Observation 4 (Active Discussion, AD).

We find that a GSD fosters more AD than a TSD. The effect is statistically
significant. This suggests that GSD’ users question, inform, and motivate each
other more than TSD’ users.

Observation 5 (Creative Conflict, CC).

We find that using a GSD has a positive effect on the amount of CC discussions.
This effect is not statistically significant in Subgroup A. In Subgroup B, this
effect is statistically significant. This suggests that GSD’ users argue and reason
about others’ discussions more than Altered-TSD’ users.

Observation 6 (Conversation Management, CM).

A GSD requires less CM effort than TSD/Altered-TSD. The effect is statisti-
cally significant for Subgroup A. This suggests that GSD’ users do less coor-
dination and acknowledgment of communicated information than TSD’ users.

4.4 Motivated and Cohesive TSD

Falessi et al. [I7] suggested that documentation of software design rationale
could support many software development activities, including analysis and
re-design. Tang et al. [56] conducted a survey of practitioners to probe their
perception of the value of software design rationale and how they use and docu-
ment it. They found that practitioners recognize the importance of document-

Rodi Jolak et al.

Active Discussion (AD)
Study EffectSize Relative p-Value Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <0,05
OExp 0,412 30% 0,303 —_—.—
REP1 0,505 22% 0,272 T 1
REP2 0,786 48% 0,013 =
A 0,612 100% 0,005 -
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,546 100% 0,131
(REP3) Y (] B e
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(2)
Creative Conflict (CC)
Study ~ EffectSize Relative p-Value Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <0,05
OExp 0,466 29% 0,245 —_—
REP1 0,745 21% 0,112 -
REP2 0,020 50% 0,948 L
A 0,300 100% 0,162 -
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,
(REP3) 1,086 100% 0,004 e
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(b)

Conversation Management (CM)

Study Effect Size Relative p-Value
(Hedges’g) Weight Sig <0,05

Effect Size and 95% Confidence Interval

OExp - 0,580 29% 0,151 D
REP1 -0,841 22% 0,075 —_— T T
REP2 - 0,793 49% 0,012 =
A - 0,740 100% 0,001 -
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,179 100% 0,615
(REP3) -0, (] A —e—
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(c)

Fig. 6: Meta-analysis for collaborative interpersonal communication

Software Engineering Whispers 27

ing design rationale for reasoning about their design choices and supporting
the subsequent implementation and maintenance of systems.

The goal of running REP3 is to know how a motivated and cohesive TSD
(as described previously in Section — Altered TSD) could influence de-
sign communications. To this end, we used a different TSD in REP3, which
includes a rationale that motivates why the MVC paradigm is selected for
structuring the design. Moreover, we organized the information/knowledge in
the TSD and made it cohesive. In particular, the relationships of each entity
are reported right after describing it, instead of being reported with all the
other relationships in the ‘relationship section’ at the end of the TSD.

To achieve the goal of REP3, we use a fixed-effect subgroup analysis [4] to
determine whether the Altered-TSD variant is more effective than the TSD.
In particular, we compare the mean effect for two subgroups of studies:

— Subgroup A: the experiments that use a TSD (OExp, REP1, and REP2).
— Subgroup B: the experiment that uses a Altered-TSD (REP3).

For each subgroup of studies, we report in Table[7] the mean effect size and
variance of the studied communication aspects. We observe that effect size of
REC and AD is lower in Subgroup B. This indicates that the Altered-TSD is
better than TSD in promoting Recall Ability and Active Discussion. We also
observe that the effect size of CM is higher in Subgroup B. This indicates that
the users of Altered-TSD spent less effort on Conversation Management.

To statistically analyze the difference between TSD and Altered-TSD, we
use the Z-test method [4]. The results of the test are presented in Table (8] We
observe three significant differences at the a level of 0,05 concerning Ezplaining
(EXP), Recall (REC), and Active Discussion (AD).

For EXP, we find that the two-tailed p-value corresponding to Z = 2,290 is
0,003. This tells us that the TSD of Subgroup A’ studies is better for Ezplaining
than the Altered-TSD of Subgroup B’s study. In addition to reporting the test
of significance, we report the clinical significance. The difference in effect size
between the two subgroups of studies is Diff = 0,935, and the 95% confidence
interval is in the range of 0,190 and 0,715.

For REC and AD, we find that the two-tailed p-value corresponding to
Z = 2,136 and 2,740 are 0,033 and 0,006, respectively. This tells us that the
Altered-TSD of the Subgroup B’s study is better than the TSD of Subgroup A’
studies for increasing Active Discussions and enhancing Recall ability of design
details. The differences in REC and AD effect size between the two subgroups
of studies are Diff= 0,639 and 1,158, and the 95% confidence intervals are in
the range of -0,124 and 0,393 for REC, and in the range of -0,062 and 0,670
for AD.

Observation 7 (Cohesive and Motivated TSD)

Based on empirical findings, we find that a cohesive TSD that motivates the
design choices with rationale increases the amount of active discussions and
enhances the recall ability of design details at the cost of reducing the perceived
quality of explaining.

28 Rodi Jolak et al.

Table 7: Effect size and variance of communication aspects of Subgroup A
and Subgroup B

Subgroup A Subgroup B
DSEL Effect size (Hedges’ g) | Variance | Effect size (Hedges’ g) | Variance
EXP 0,233 0,023 1,168 0,076
UND 0,150 0,024 0,216 0,065
REC 0,304 0,024 -0,336 0,066
AD 0,612 0,047 -0,546 0,131
CcC 0,300 0,046 1,086 0,146
CM -0,740 0,048 -0,179 0,127

Table 8: Subgroup analysis of the difference between TSD and Altered-TSD

Dept. Var Statistical Significance Clinical Significance
: " | Z-test | p-value (2-tailed) | Abs. ES. Diff. | Lower CL | Upper CL

EXP 2,960 0,003 0,935 0,190 0,715
UND 0,220 0,826 0,066 -0,091 0,425
REC 2,136 0,033 0,639 -0,124 0,393
AD 2,740 0,006 1,158 -0,062 0,670
CC 1,794 0,073 0,786 0,122 0,856
CM 1,341 0,180 0,561 -0,952 -0,219

Abs. ES. Diff: Absolute Effect Size Difference
C.L.: Confidence Level

4.5 Perceived Experience in Working with Different Design Representations

The perceived experience (based on self-evaluations) in working with different
design representations are detailed herﬂ In summary, we find that:

— the participants (both Ezplainers and Receivers) perceive that the design
of the system is very clear.

— the participants perceive that they are good in recalling a conversation.

— the participants in group G perceive that they are good in recalling UML
design models.

— the participants in group T perceive that they are good in recalling a
textual documentation.

— the Fxplainers in group G perceive that models are helpful in understand-
ing the design.

— the Faplainers in group T perceive that having diagrams would have helped
in understanding the design.

— the Ezplainers in group G perceive that models are very helpful in explain-
ing the design.

— the Explainers in group T perceive that having diagrams would have helped
in understanding the design.

— the Receivers in group G perceive that models are helpful in understanding
the design.

— the Receivers in group T perceive that having diagrams would have helped
in understanding the design.

18 http://rodijolak.com/SE_Whispers/PostTask_Results.pdf

http://rodijolak.com/SE_Whispers/PostTask_Results.pdf

Software Engineering Whispers 29

5 Discussion

Our experiments investigate whether design communication between software
engineers can become more effective when using GSD instead of TSD to ex-
change design information. To this end, we investigate whether using a GSD
affects six considered communication aspects (Understanding, Explaining, Re-
call, Active Discussion, Creative Conflict, and Conversation Management) dif-
ferently from using a TSD (R.Q.1). Moreover, we study whether a cohesive and
motivated TSD (i.e., Altered-TSD) improves design communication (R.Q.2).

Considering Subgroup A, the global effect size of the perceived explaining
quality is positive. This means that using a GSD has a positive effect on the
perceived explaining quality. Similarly, the global effect size of the understand-
ing (i.e., maintenance task) score is positive, which means that the score of the
GSD users is better than the score of TSD users. Nevertheless, by considering
distributions of the scores we neither find a statistically significant difference
in the quality of explaining (Observation 1) nor in the quality of understanding
(Observation 2) between the two groups: G and T.

While analyzing the recorded, and further transcribed, discussions between
the Ezplainers and Receivers, we interestingly observed a difference in the ex-
plaining approach between the Ezplainers of the two groups. Figure[7] provides
an illustration of the observed explaining approaches in the two groups. On
the one hand, the Ezplainers of a TSD tended to explain the three mod-
ules of the MVC sequentially: Firstly the model entities, then the controllers,
and lastly the views, as these modules are orderly presented in the textual
document. We think that this trend is intrinsically imposed by the nature of
textual descriptions where the knowledge is presented sequentially on a num-
ber of consecutive ordered pages. On the other hand, the Ezplainers of the
GSD had more freedom in explaining the design. Indeed according to their
explaining preferences, the Fzplainers of the GSD tended to jump back and
forth between the three MVC modules when explaining the design. Based on
this, we suggest that a GSD has an advantage over the TSD in unleashing
Explainers’ expressiveness when explaining the design, as well as in helping
navigation and getting a better overview of the design. However, developers
might not have this advantage when explaining many GSDs (e.g., many UML
diagrams) spread on different pages within a software design documentation.

Model Controller View Model Controller View

Group T Group G

Fig. 7: Observed explaining approaches used in the two groups: G and T.

30 Rodi Jolak et al.

We found that using a GSD is better than a TSD for recalling the details
of the discussed design (Observation 3). This is actually inline with Maede
et al. [39], who suggest that drawing graphical notations brings more recall
benefits than writing textual words in younger and older adults.

Graphical representations are considered better than the textual in repre-
senting information which deals with relationships between entities [60]. One
of the recall questions that we used to measure the recall ability of the partic-
ipants is concerned with the relationships between the entities of the software
architecture design. We compared the score (interval variable; min is 0 and
max is 1 point) of the two groups on this question. On average, the users
of the graphical representation were slightly better in recalling the relation-
ships between the entities (G: Mean= 0,506; Std. Dev.= 0,331) vs. (T: Mean=
0,423; Std. Dev.= 0,347). However, this difference is not statistically significant
(Sig.= 0,128 > 0,05; Hedges’ g= 0,244; Power= 0,338).

The Chinese Whispers game is often invoked as a metaphor for miscommu-
nication. In this game, the first player often fails to recall all the information of
the initial message that she/he receives. Likewise, the second player often fails
to recall all the information of the message that she/he receives from the first
player, and so on for the rest of the players. In the same manner, the Ezplain-
ers in our experiments failed to recall all the design details that we asked for
in the post-task questionnaire (Mean Score= 3,319; Std. Dev.= 0,855). The
Receivers were, as expected, worse than the Ezplainers in recalling the design
details (Mean Score= 2,492; Std. Dev.= 0,885). Moreover, we found that the
difference in recall ability betweeen Explainers and Receivers is statistically
significant (Sig.= 0,000 < 0,05; Hedges’ d= 0,946, Power= 0,999).

Based on empirical results, we find that a GSD fosters more Active Dis-
cussion (AD) than TSD (Observation 4), while reducing Conversation Man-
agement (CM) at the same time (Observation 6). In the skill taxonomy of
McManus and Aiken [38], the communication activities in the AD category
generally aim at helping an active exploration of the discussed argument by en-
couraging information requesting, clarification, or elaboration. In contrast, the
branch of CM comprises communication activities that generally contribute
less to active information requesting or clarification, such as acknowledging
or coordinating group tasks. Consequently, we suggest that using a GSD as
a basis for software design communication promotes an active exploration of
the communicated designs, which in turn helps to improve the effectiveness of
software design communication.

There is no significant difference in Creative Conflict (CC) discussions be-
tween group G using GSD and group T using TSD (Observation 5). We suggest
that the type of design description does not influence design argumentation
and reasoning. Alternatively, we think that the context, complexity of the de-
sign, available knowledge, or the application of reasoning techniques might
affect the quality of design argumentation and reasoning discussions, as sug-
gested by Tang et al. [57].

It is widely assumed that model-based techniques support communicating
software [26]. Our findings support such assumption and prove that using a

Software Engineering Whispers 31

GSD improves the recall ability of the discussed design details, fosters Active
Discussion, and at the same time reduces less useful conversation on activities
management.

We conducted REP3 to better calibrate our findings of the differences be-
tween GSD and TSD. We found that a motivated (i.e., augmented with ratio-
nale) and cohesive TSD helps to enhances the recall of the design details and
increases the amount of active discussions at the cost of reducing the perceived
quality of explaining (Observation 7). This finding is indeed inline with Tang
et al. [55] who stated that discussing the reasons of making software design
choices (i.e. design rationale) positively contributes to the effectiveness of soft-
ware design discussions by facilitating communication and design knowledge
transfer. However, we found that adding more details (e.g., rationale) to the
TSD adversely influences the perceived quality of explaining. One explanation
for this effect is that the Faplainers did not have enough time to explain the
details of the Altered-TSD. For the same reason, the Receivers might have per-
ceived that the FEzxplainers did not go through the entire textual description
when explaining the software design.

5.1 Threats to Validity

Our family of experiments is subject to threats to their construct validity,
internal validity (causality), external validity (generalizability), and conclusion
validity. We highlight these issues and discuss related study design decisions.

5.1.1 Construct Validity

Constructs validity refers to how well operational measures represent what
researchers intended them to represent in the study in question. In this study,
we used a single method for measuring the impact of different design repre-
sentation per each communication aspect. To mitigate this issue, we did not
only rely on questionnaires, but also recorded, transcribed, and later evalu-
ated the communication observed during the experiments. Nonetheless, lever-
aging additional methods to probe the explaining, understanding, recall, and
interpersonal communication skills of the participants might help to better
investigate the effects of different design representations. Such methods, for
instance, might comprise conducting actual software design or software engi-
neering tasks after receiving the explanation. However, this would introduce
a multitude of other variables (e.g., the programming language or IDE used)
that either can be hardly controlled or demand for drastic simplification, thus
reducing our experiments’ generalizability.

Another threat to construct validity could arise from discretizing the mea-
surement of continuous properties, such as the participants’ familiarity with
software design or their expertise with UML. This challenge has been inves-
tigated for balanced Likert and identified as not compromising generalizabil-
ity [45].

32 Rodi Jolak et al.

5.1.2 Internal Validity

The questionnaires to evaluate the participants’ performance raise threats to
internal validity themselves: For instance, the participants might interpret the
Likert scales we have used differently, might have avoided extreme responses
(central tendency bias), and - as the participants evaluated their communi-
cation skills themselves - might be biased towards overestimating or under-
estimating their skills, which might be subject to different effects on their
introspection. To support comprehension and reproduction of results, we use
established surveys where possible and provide all materials on the experi-
ments’ companion website. Nonetheless, completely mitigating the potential
effects of surveys’ general deficiency requires the development of novel meth-
ods to test familiarity and understanding of UML designs and textual designs,
as well as communication skills. While for the latter, specifically tailored exer-
cises might be feasible to evaluate the skill level, conducting these, (a) requires
unbiased instruments as well and (b) might affect our experiments. A specific
challenge of our family of experiments regarding the questionnaires arises from
conducting the REP2 survey in French, whereas the other experiments used
English documents. While this generally could affect the results, the exper-
imenters of REP2 had the task documents and questionnaires professionally
translated and reviewed to maintain the consistency of the communicated in-
formation.

To mitigate the effect of limited preparation and explanation time — the
Ezxplainers had 20 minutes to understand the design and 12 to discuss it with
the Receivers — we conducted multiple pilot studies at all sites prior to the
actual experiments to understand how much time is required. After running the
pilot studies, we increased the initially considered 10 minutes of discussion to
12 based on the feedback of the participants of the pilot studies. Afterwards, we
conducted another pilot study that confirmed that both times are considered
suitable for the tasks.

Other challenges to internal validity stem from the selection of our exper-
iments’ participants. Potential confounding factors include that due to ran-
domly assigning the participants to the G or T group, certain personality
types are prevalent in one of the groups — which could affect results. By mea-
suring the Big Five factors of personality [14], we checked that this is not the
case: the distribution of the five personality factors (Extraversion, Agreeable-
ness, Conscientiousness, Neuroticism, and Openness) is the same across the
two groups. Similarly, it could have affected our findings that the members of
one of the two groups have significantly more experience with software design
than the members of the other group. The pre-task questionnaire establishes
that this is not a problem of our study. Other issues could have arisen from
our participants being unfamiliar with UML designs or textual designs but the
pre-task questionnaire shows that this is not the case. We assume that this is
due to the participants’ educational backgrounds (in which processing textual
designs for exercises or exams is common).

Software Engineering Whispers 33

The textual representations used in this research are structured by inden-
tation, indexing, and grouping information, which are helpful for information
retrieval [8]. However, these might have positively affected the quality of TSD
communication. Similarly, the MVC entities in the graphical representation
were highlighted by colors, which is also helpful for information retrieval [g].
This might have also positively affected the quality of GSD communication. If
the descriptions of the entities in TSD were tangled and if the entities of the
GSD were not colored, then the quality of communication of these two rep-
resentations might have been different and less efficient. As we use different
enhancement techniques for GSD and TSD, it is possible that this affected the
results of the comparison. Indeed, the augmentations to the textual represen-
tation might yield other (stronger or weaker) effects than the class diagram
coloring. As both, coloring in graphical models and structuring of textual de-
sign documents, is common in industrial practice, we do not consider this a
significant threat over using unstructured text and uncolored diagrams.

Some Receivers of the text group were drawing (informal) class diagrams
while being explained to. Hence, there might be an interaction of both treat-
ments, but with only six (2,5%) of the Receivers being affected, the effect of
this combination of both representations is negligible.

Another threat might arise from using textual survey questions as the
method to investigate the benefits of textual and graphical designs. Maybe,
textual design representations yielded better answers to the questions because
they are syntactically closer than graphical designs to the textual answers. This
threat could be mitigated through leveraging graphical questions and answers
in the surveys. While this would be feasible for the answers, for formulating
the questions as graphical class diagrams, this would entail a new syntax which
might yield further threats.

5.1.3 External Validity

Threats to external validity indicate to which extent the results of our study
can be generalized. Due to working at software engineering research and edu-
cation institutes, we selected students with strong software engineering back-
grounds of our Universities. While this prevents generalizing results to software
developers with different backgrounds (e.g., developers in computer vision, ar-
tificial intelligence, or robotics), software design aims at software architecture
from which we expect strong software engineering backgrounds.

Also, we conducted our studies with students instead of software design
practitioners. Hence, the participants involved in our experiments may not
represent the general professional population of software engineering practi-
tioners. While this limits us from generalizing our findings to other subjects
(i.e., domain experts, professional software architects, industrial practitioners
in the field), the differences between students and professional software devel-
opers in performing small tasks are generally very small [25]. We, therefore,
consider our findings as a basis to extend our study to a larger community of
software engineering practitioners.

34 Rodi Jolak et al.

Another threatening effect is that the population of professional software
developers yield a larger age range than students. With recall abilities changing
over time [9], this limits generalization of our results to professional software
developers of the same age range — between 20 and 30 years — than software
engineering students and PhD students (as proposed in [I8]).

Moreover, the studies were conducted in educational contexts, i.e., contexts
in which the students usually are evaluated and graded. This generally might
have improved their performance (Hawthorne effect). However, as this applies
to both groups, this does not affect our results.

Due to the outline of our experiments as single one-hour sessions and their
popular context in sports that are easily relatable, we can exclude threats
regarding history or maturation. The participants could neither have been
effected from previous events of the experiment as there have not been any.

Moreover, as we used the same two textual/graphical notations in all ex-
periments, this limits generalizability of our results to other textual or graph-
ical representations, i.e., differently structured text or differently highlighted
class diagrams. This, however, is a threat independent of the specific choice
of representation and demands for studies deploying multiple (popular) rep-
resentations — which demands correctly identifying industrially relevant forms
of representation and yields further threats to generalizability.

The use of a single case specification is a threat to the generalizability of
the results. The size, topic, and complexity of the design case specification
might affect the communication quality and the results of the comparison.
This threat can be addressed by conducting replication studies with different
design case specifications.

Another challenge to generalizability might arise from the constructs inves-
tigated, i.e., whether structured textual design documents and colored UML
class diagrams actually are relevant to communicating design decisions in in-
dustry. While the use of UML in software design and engineering is undaunted
in various domains (cf. [36.[64]), so is the use of textual documents to describe
software designs [Tl[6T,[42]. However, using a specific form of structured text for
communicating design decisions limits generalizability to this form of text. For
instance, in requirements engineering, there are different tools that support
capturing textual requirements and design decisions using different textual
representations [6] and using these might entail different effects.

Generalizability might also be challenged by the size of documents used of
investigation. There are no studies on the number of classes per class diagram
in industrial software engineering projects. However, a report on numbers of
classes per class diagram used in different lectures reports that in 101 dia-
grams from 5 different courses, the maximum number of classes per diagram
is 40, with the minimum being 3 and the average being 10.75 [63]. This might
indicate that our design class diagram of 28 classes is a bit more complex
than it would be usual for education (and hence be more realistic regarding
industrial challenges). Another study investigated 100 android applications
from open-source repositories [51]. Here, only the average size of these appli-
cations as 90 classes is reported. While this does not report how these would

Software Engineering Whispers 35

be aligned in different class diagrams, assuming these cover at least three dif-
ferent concerns (e.g., model, view, and controller) appears reasonable, which
would entail 30 classes per class diagram on average and would be in line
with the 28 classes presented in our experiment. Therefore, we consider the
size of the experiments’ class diagrams relevant. For the textual design docu-
ments, we are unaware of any studies on their average size, but due to them
containing the same information as the class diagrams, which are of relevant
size, we conclude that these should be as well. However, this needs further
investigation and might challenge the generalizability of our results. Also, the
effect of the number of classes conveyed in both representations might affect
understanding and recall. This also demands for further investigation.

Similar to the threat of using specifically indented and colored documents,
the optimality of their representations might challenge generalizability of our
results as it might be conceivable that there are better suitable textual or
graphical representations that lead to different results. To the best of our
knowledge, the best representations of textual design documents and graphical
class diagrams still have to be identified and whether these are optimal for any
domain needs to be investigated. Nonetheless, differently presented textual
or graphical designs might have yielded different effects. This, however, is a
threat to generalizability that holds for any study investigating a finite number
of alternative treatments where infinitely many are possible and needs to be
considered when applying our results.

Also, the experimental conditions (scope, team size, duration, etc.,) might
differ from real-world conditions and limit generalizability of results. Nonethe-
less, especially in the use case of onboarding of job newcomers by experienced
developers and designers, this challenge is of practical interest as indicated by

Ericsson’s “FExperience Engine” initiative (cf. [section 1J).

5.1.4 Conclusion Validity

Threats to conclusion validity challenge how reasonable a research or experi-
mental conclusion is. In our study, these threats might arise, mainly, through
concluding the existence of in-existing differences (type I error) and concluding
the in-existence of existing differences (type II error).

We conducted hypotheses testing to determine whether two independent
variables have the same distribution. We might have committed type I error
and incorrectly rejected the null hypothesis (false positive), or committed type
IT error and incorrectly accepted the null hypothesis (false negative). However,
we considered the significance and minimized the risk of detecting a non-real
effect by setting the « value to 0,05. Also, we analyzed the sensitivity by
discussing the effect size and statistical power of our tests.

We underline that a small sample size of experiments yields low statistical
power which, in turn, increases the likelihood of making type II error (accept-
ing the null hypothesis when it is false). To mitigate this threat, we conducted
a family of experiments that aims at maximizing the sample size with repeated
measures and increasing the statistical power and precision of the results [49].

36 Rodi Jolak et al.

5.2 Implications

Using GSD to communicate software designs produces more active discussion,
less conversation management, and better recall. These effects contribute to
deepening the active exploration of the discussed design [21], which is why we
consider using GSD beneficial to communicating software designs. For iden-
tification of design errors, textual descriptions seem to be more efficient [40]
than GSD. Our findings suggest the use of GSD as a basis for communicating
designs with the objective of transferring design knowledge, which is in line
with the observed benefits of graphical documents on recall [39].

Our findings, however, assume that the textual design document accurately
represents the GSD. Often, however, these natural language documents yield
ambiguities or omit details that can be missed less easily in graphical descrip-
tions. We assume that this can be due to graphical descriptions, such as UML
class diagrams, being accessible for model checking to identify, e.g., missing
associations or missing types. Future work should investigate whether textual
artifacts used in practice indeed represent the underlying design accurately.

With REP3, we investigated the effects of a cohesive and motivated TSD on
design understanding, explaining, recall, and interpersonal communication. As
we found a difference in explaining, recalling, and active discussion between
both groups: TSD and altered-TSD (Observation 7), future research in im-
proving software design communication should investigate comparing benefits
of augmenting GSD with textual motivation and rationale as well.

5.3 Generalization

Generally, we found that communicating design with a GSD yields better dis-
cussions and better recall. We believe that these effects are not limited to
software design documents but transfer to graphical software descriptions in
general. While, for instance, UML class diagrams meant for implementation
might differ in the level of detail, but not in the general representation. Apply-
ing our findings regarding the benefits of (i) GSD over TSD and (ii) cohesive
TSD with rationale to other kinds of software artifacts can yield benefits for
their communication and consumption as well. For instance, as requirements
documents become more complex [19], augmenting these with graphical rep-
resentations or rational could, ultimately, improve requirements engineering.
Model-based systems engineering [44] traditionally considers graphical repre-
sentations. Nonetheless, similar improvements could be achieved as the collab-
orating stakeholders from various domains could benefit from being provided
rationale of design decisions made in other domains.

There also is research in textual modeling [24], which leverages textual
models with well-defined semantics for software design and development. As
such, these textual models are in-between GSD and TSD and whether our re-
sults translate to textual software models, such as UML/P class diagrams [47],
needs further investigation.

Software Engineering Whispers 37

Similarly, the observed benefits of GSD are subject to the viewpoint we
selected in a fashion that allows presenting the complete design description
(i.e., model) on a single sheet of paper. For more complex diagrams, this might
not scale-up. However, we assume that the textual design document (currently
three sheets of paper) scales-up even worse. Consequently, we believe that the
effects of software design representation on large designs with hundreds or
thousands of elements will be even more prominent.

6 Conclusion and Future Work

We conducted a family of experiments to study the effect of using graphical
versus textual software design descriptions on software design communication.
According to [IL1253], we considered the following communication aspects:

Ezxplaining: communicating intellectual capital from one person to others.

Understanding: receiving others’ intellectual capital.

Recall: recognizing or recalling knowledge from memory to produce or re-

trieve previously learned information.

Collaborative Interpersonal Communication, which includes:

— Active Discussion: questioning, informing, and motivating others.

— Creative Conflict: arguing and reasoning about others discussions.

— Conwversation Management: coordinating and acknowledging communi-
cated information.

Based on empirical findings, we suggest that a graphical software design de-
scriptions (GSD) improves design-knowledge transfer and communication by:

e promoting Active Discussion between developers,
e reducing Conversation Management effort, and
e improving the Recall ability of design details.

Furthermore, compared to its unimproved version, a well-organized and
motivated textual software design description (that is used for the same amount
of time) enhances the recall of design details and increases the amount of active
discussions at the cost of reducing the perceived quality of explaining.

6.1 Impacts on Practitioners

In a field study of the Software Design process, Curtis et al. [T1] identified
broad communication and knowledge sharing as two factors that have effects
on software quality and productivity. According to our findings, we suggest
that the use of GSD can help in improving design-knowledge sharing and
communication. Hence, we identify the following impacts on practitioners:

e Agile Practices. Agile development practices include several processes in
which communication is at least involved, if not central [43]. Daily meet-
ings are, by definition, the perfect example of agile ceremony which com-
pletely relies on communication. According to Karlstrom et al. [32], hold-
ing daily meetings as a mechanism for design problem solving appeared to

38

Rodi Jolak et al.

have positive effects on the communication of the design issues. Based on
our findings, introducing GSDs in daily discussions about design decisions
would enhance the communication quality between participants, which in
turn could strengthen the impact of applying agile practices in software
engineering projects.

Reducing Development Efforts. Multiple studies demonstrated that com-
munication is one of the most time-consuming tasks in software develop-
ment, requiring more effort than any other development activity [30] and
taking up to two hours a day per each individual developer[65]. As face-to-
face communications are strongly preferred when possible [54L[65], the use
of GSD as a support for design-related communication could be of benefit
for productivity. Minimizing the required effort for communication would
provide developers with more time at disposal as well as reduce developers
mental-load, so they can focus on different tasks.

Satisfaction and Productivity. Although there is no notable difference in the
perceived quality of explaining between group G and group T, all partici-
pants from the two groups reported that a GSD indeed helped, or would
have helped them, in explaining the design. Accordingly, we think that
using GSDs would make the communication of the design easier and in-
crease the satisfaction of developers. Graziotin et al. [20] reported that
satisfaction is directly correlated to productivity. So, we suggest the use of
GSD in design meetings in order to increase the productivity of software
development teams.

Pedagogical medium. By observing of the explaining approaches in the two
groups, we suggested that a GSD has an advantage over the TSD in helping
navigation and getting a better overview of the design. Even though this
requires more investigation, we suggest that, due to its nature, a GSD
provides more adaptability and extra degrees of explaining freedom, which
makes it a better pedagogical medium for face-to-face design knowledge
transfer.

Design Rationale. Falessi et al. [17] state that documenting design ratio-
nale could support many software development activities, such as an impact
analysis or major redesign. Tang et al. [58] find that design reasoning (i.e.,
discussing rationale) improves the quality of software design. In this pa-
per, we find that a TSD that motivates the design choices with rationale
can enhance the recall and explaining of its design details. Accordingly,
we suggest the producers of software design tools (graphical or textual)
to provide explicit mechanisms for capturing and retrieving design ratio-
nale. Furthermore, we encourage developers to include design rationale in
design documentations to improve design communication, which in turn
should improve the overall communication and collaboration, and thus the
productivity, in SE projects.

Software Engineering Whispers 39

6.2 Future Work

One future direction is to replicate the experiment in order to address and
minimize the threats to the validity of our research design and results. For
instance, by replicating the experiment with a more complex graphical or tex-
tual software design description, by changing the order of complexity of the
recall and maintenance tasks, or by involving professionals. Moreover, to max-
imize the benefits, another line of research is to investigate new techniques or
approaches that would enhance the effectiveness of software design communi-
cation. One example of these approaches is proposed in a study by Tang et
al. [57] where a reminder card approach was employed to improve software
design reasoning discussions. Another example is proposed by Robillard et al.
[46] who argue that automatic on-demand documentation generators would
effectively support the information needs of developers.

Acknowledgements We would like to thank Prof. Robert Feldt for his valuable sugges-
tions and inspiring discussions about this work. Moreover, this work was partially sup-
ported by the Scientific Grant Agency of Slovak Republic (VEGA) under the grant No. VG
1/0759/19 and it is partial result of the project Research of methods for acquisition, analysis
and personalized conveying of information and knowledge, ITMS 26240220039, co-funded
by the ERDF.

Ethical Issues In this study, we considered the major ethical issues according to [52]:
informed consent, beneficence— do not harm, and respect for anonymity and confidentiality.

References

1. Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pin-
trich, P.R., Raths, J., Wittrock, M.C.: A taxonomy for learning, teaching, and assess-
ing: A revision of bloom’s taxonomy of educational objectives, abridged edition. White
Plains, NY: Longman (2001)

2. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of experiments.
IEEE Transactions on Software Engineering 25(4), 456-473 (1999)

3. Bobek, E., Tversky, B.: Creating visual explanations improves learning. Cognitive Re-
search: Principles and Implications 1(1), 27 (2016)

4. Borenstein, M., Hedges, L.V., Higgins, J.P., Rothstein, H.R.: Introduction to meta-
analysis. John Wiley & Sons (2011)

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice.
Synthesis Lectures on Software Engineering 1(1), 1-182 (2012)

6. Cant, T., McCarthy, J., Stanley, R.: Tools for requirements management: a comparison
of telelogic doors and the hive. Tech. rep., Defence Science and Technology Organisation
Edinburg (Australia) Information Networks DIV (2006)

7. Casamayor, A., Godoy, D., Campo, M.: Mining textual requirements to assist architec-
tural software design: a state of the art review. Artificial Intelligence Review 38(3),
173-191 (2012)

8. Conversy, S.: Unifying textual and visual: A theoretical account of the visual perception
of programming languages. In: Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software, pp. 201—
212. ACM (2014)

9. Craik, F.I.: Aging and memory: Attentional resources and cognitive control (2019)

10. Crugz, S., da Silva, F.Q., Capretz, L.F.: Forty years of research on personality in software
engineering: A mapping study. Computers in Human Behavior 46, 94-113 (2015)

40

Rodi Jolak et al.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Commun. ACM 31(11), 1268-1287 (1988)

De Vries, R.E., Van den Hooff, B., De Ridder, J.A.: Explaining knowledge sharing: The
role of team communication styles, job satisfaction, and performance beliefs. Commu-
nication research 33(2), 115-135 (2006)

Dobing, B., Parsons, J.: How UML is used. Communications of the ACM 49(5), 109-113
(2006)

Donnellan, M.B., Oswald, F.L., Baird, B.M., Lucas, R.E.: The mini-ipip scales: tiny-
yet-effective measures of the big five factors of personality. Psychological assessment
18(2), 192 (2006)

Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods for
software engineering research. In: Guide to advanced empirical software engineering,
pp. 285-311. Springer (2008)

Ellis, P.D.: The essential guide to effect sizes: Statistical power, meta-analysis, and the
interpretation of research results. Cambridge University Press (2010)

Falessi, D., Briand, L.C., Cantone, G., Capilla, R., Kruchten, P.: The value of design
rationale information. ACM Transactions on Software Engineering and Methodology
(TOSEM) 22(3), 21 (2013)

Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Miinch, J., Jedlitschka, A., Oivo, M.:
Empirical software engineering experts on the use of students and professionals in ex-
periments. Empirical Software Engineering 23(1), 452489 (2018)

Gralha, C., Damian, D., Wasserman, A.L.T., Goulao, M., Aratjo, J.: The evolution of
requirements practices in software startups. In: Proceedings of the 40th International
Conference on Software Engineering, pp. 823-833. ACM (2018)

Graziotin, D., Wang, X., Abrahamsson, P.: Do feelings matter? on the correlation of
affects and the self-assessed productivity in software engineering. Journal of Software:
Evolution and Process 27(7), 467-487 (2015)

Guastello, S.J.: Creative problem solving groups at the edge of chaos. The Journal of
Creative Behavior 32(1), 38-57 (1998)

Hedges, L.V.: Distribution theory for glass’s estimator of effect size and related estima-
tors. journal of Educational Statistics 6(2), 107-128 (1981)

Heijstek, W., Kuhne, T., R.V. Chaudron, M.: Experimental analysis of textual and
graphical representations for software architecture design. In: International Symposium
on Empirical Software Engineering and Measurement, pp. 167-176. IEEE (2011)
Holldobler, K., Rumpe, B., Wortmann, A.: Software Language Engineering in the Large:
Towards Composing and Deriving Languages. Computer Languages, Systems & Struc-
tures 54, 386-405 (2018)

Host, M., Regnell, B., Wohlin, C.: Using students as subjects—a comparative study of
students and professionals in lead-time impact assessment. Empirical Software Engi-
neering 5(3), 201-214 (2000)

Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engineering practices in in-
dustry: Social, organizational and managerial factors that lead to success or failure.
Science of Computer Programming 89, 144-161 (2014)

Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of MDE in industry. In: Proceedings of the 33rd international conference on software
engineering, pp. 471-480. ACM (2011)

Jarboe, S.: Procedures for enhancing group decision making. Communication and group
decision making pp. 345-383 (1996)

Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineer-
ing. In: Guide to advanced empirical software engineering, pp. 201-228. Springer (2008)
Jolak, R., Ho-Quang, T., R.V. Chaudron, M., R.H. Schiffelers, R.: Model-based software
engineering: A multiple-case study on challenges and development efforts. In: Proceed-
ings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pp. 213-223. ACM (2018)

Jolak, R., Wortmann, A., R.V. Chaudron, M., Rumpe, B.: Does distance still matter?
insights from revisiting collaborative distributed software design. IEEE Software (2018)
Karlstrom, D., Runeson, P.: Integrating agile software development into stage-gate man-
aged product development. Empirical Software Engineering 11(2), 203-225 (2006)

Software Engineering Whispers 41

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Kauffeld, S., Lehmann-Willenbrock, N.: Meetings matter: Effects of team meetings on
team and organizational success. Small Group Research 43(2), 130-158 (2012)

Koo, T.K., Li, M.Y.: A guideline of selecting and reporting intraclass correlation coef-
ficients for reliability research. Journal of chiropractic medicine 15(2), 155-163 (2016)
Kortum, F., Klinder, J., Schneider, K.: Don’t underestimate the human factors! ex-
ploring team communication effects. In: International Conference on Product-Focused
Software Process Improvement, pp. 457-469. Springer (2017)

Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Assessing the state-of-practice
of model-based engineering in the embedded systems domain. In: International Con-
ference on Model Driven Engineering Languages and Systems, pp. 166-182. Springer
(2014)

Liskin, O.: How artifacts support and impede requirements communication. In: Inter-
national Working Conference on Requirements Engineering: Foundation for Software
Quality, pp. 132-147. Springer (2015)

McManus, M.M., Aiken, R.M.: Monitoring computer-based collaborative problem solv-
ing. Journal of Interactive Learning Research 6(4), 307 (1995)

Meade, M.E., Wammes, J.D., Fernandes, M.A.: Drawing as an encoding tool: Memorial
benefits in younger and older adults. Experimental aging research 44(5), 369-396 (2018)
Melia, S., Cachero, C., Hermida, J.M., Aparicio, E.: Comparison of a textual versus
a graphical notation for the maintainability of mde domain models: an empirical pilot
study. Software Quality Journal 24(3), 709-735 (2016)

Moody, D.L.: The” physics” of notations: a scientific approach to designing visual no-
tations in software engineering. In: 2010 ACM/IEEE 32nd International Conference on
Software Engineering, vol. 2, pp. 485-486. IEEE (2010)

Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A.: A textual-based
technique for smell detection. In: 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), pp. 1-10 (2016)

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile
practices on communication in software development. Empirical Software Engineering
13(3), 303-337 (2008)

Ramos, A.L., Ferreira, J.V., Barceld, J.: Model-based systems engineering: An emerging
approach for modern systems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 42(1), 101-111 (2012)

Ray, J.J.: The Construct Validity of Balanced Likert Scales. The Journal of Social
Psychology 118(1), 141-142 (1982)

Robillard, M.P., Marcus, A., Treude, C., Bavota, G., Chaparro, O., Ernst, N., Gerosa,
M.A., Godfrey, M., Lanza, M., Linares-Vasquez, M., et al.: On-demand developer doc-
umentation. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 479-483. IEEE (2017)

Rumpe, B.: Agile Modeling with UML: Code Generation, Testing, Refactoring. Springer
International (2017)

Rus, L., Lindvall, M., Sinha, S.: Knowledge management in software engineering. IEEE
software 19(3), 26-38 (2002)

Santos, A., Gémez, O.S., Juristo, N.: Analyzing families of experiments in SE: a sys-
tematic mapping study. IEEE Transactions on Software Engineering (2018)

Sharafi, Z., Marchetto, A., Susi, A., Antoniol, G., Gueheneuc, Y.G.: An empirical study
on the efficiency of graphical vs. textual representations in requirements comprehension.
In: Program Comprehension (ICPC), 2013 IEEE 21st International Conference on, pp.
33-42. IEEE (2013)

Shatnawi, A., Seriai, A., Sahraoui, H., Al-Shara, Z.: Mining software components from
object-oriented apis. In: International Conference on Software Reuse, pp. 330-347.
Springer (2015)

Singer, J., Vinson, N.G.: Ethical issues in empirical studies of software engineering.
IEEE Transactions on Software Engineering 28(12), 1171-1180 (2002)

Soller, A.: Supporting social interaction in an intelligent collaborative learning system.
International Journal of Artificial Intelligence in Education (IJAIED) 12, 40-62 (2001)
Storey, M.A., Zagalsky, A., Figueira Filho, F., Singer, L., German, D.M.: How social
and communication channels shape and challenge a participatory culture in software
development. IEEE Transactions on Software Engineering 43(2), 185-204 (2017)

42 Rodi Jolak et al.

55. Tang, A., Aleti, A., Burge, J., van Vliet, H.: What makes software design effective?
Design Studies 31(6), 614-640 (2010)

56. Tang, A., Babar, M.A., Gorton, 1., Han, J.: A survey of architecture design rationale.
Journal of systems and software 79(12), 1792-1804 (2006)

57. Tang, A., Bex, F., Schriek, C., van der Werf, J.M.E.: Improving software design
reasoning—a reminder card approach. Journal of Systems and Software 144, 22-40
(2018)

58. Tang, A., Tran, M.H., Han, J., Van Vliet, H.: Design reasoning improves software design
quality. In: International Conference on the Quality of Software Architectures, pp. 28—
42. Springer (2008)

59. Tversky, B.: Multiple models. in the mind and in the world. Historical Social Re-
search/Historische Sozialforschung. Supplement (31), 59-65 (2018)

60. Volter, M.: Md*/dsl best practices update march 2011. Update (2011)

61. Wagner, S., Ferndndez, D.M.: Analyzing text in software projects. In: The Art and
Science of Analyzing Software Data, pp. 39-72. Elsevier (2015)

62. Wohlin, C., Runeson, P.;, Hést, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in software engineering. Springer Science & Business Media (2012)

63. Wolf, M., Petridis, M., Ma, J.: Using structural similarity for effective retrieval of knowl-
edge from class diagrams. In: International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pp. 185-198. Springer (2013)

64. Wortmann, A., Barais, O., Combemale, B., Wimmer, M.: Modeling languages in in-
dustry 4.0: an extended systematic mapping study. Software and Systems Modeling
(2019)

65. Wu, J., Graham, T.C.N., Smith, P.W.: A study of collaboration in software design. In:

2003 International Symposium on Empirical Software Engineering, 2003. ISESE 2003.
Proceedings., pp. 304-313 (2003)

	Introduction
	Related Work
	Experimental Design
	Results
	Discussion
	Conclusion and Future Work

